• 제목/요약/키워드: HBx

검색결과 23건 처리시간 0.022초

Repression of p21 Expression by Hepatitis B Virus X Protein via a p53-Independent Pathway

  • 안지영;장경립
    • 한국생명과학회:학술대회논문집
    • /
    • 한국생명과학회 2000년도 제30회 학술심포지엄
    • /
    • pp.39-43
    • /
    • 2000
  • HBV는 인체에 감염하여 간염, 간경변 및 간암을 유발하는 hepadnaviruses의 일종으로써 임상적으로 매우 중요한 바이러스이다. 그러나 이 바이러스에 의한 간암(HCC)의 발생 메커니즘은 아직 불확실하다. 최근에는 HBV의 X 단백질(HBx)이 간암 발생에 중요한 역할을 수행하는 것으로 보고되고 있다. HBx 단백질은 전사 활성인자(transcriptional activator)로써 숙주세포의 유전자발현에 영향을 미치어 세포증식 및 분화에 영향을 줄 수 있다. 본 연구에서는 HBx 단백질이 NIH 3T3 cell의 증식 및 형질전환에 미치는 영향을 조사하였다. HBx 단백질을 발현하는 세포주는 정상세포에 비하여 증식 속도가 2배 정도 빠르며, soft agar assay 결과에 의하면 대조군과 비교하여 더 많은 수의 colony를 형성하였다. 또한, 이들 HBx 발현 세포들은 접촉 저해 능력을 상실하여 HBx가 세포 형질 전환 능력을 가짐을 알수 있다 또한 HBx 발현 세포주에 있어서 p21의 RNA 및 protein수준이 정상세포에 비하여 낮으므로 HBx에 의한 증식 촉진 및 세포 형질 전환이 p21을 매개하여 이루어 짐을 알 수 있었다. HBx에 의한 p21 유전자의 발현 감소는 p21의 전사 수준에서 이루어지며 이는 p53-비의존적 경로에 의하여 이루어졌다.

  • PDF

C-terminal truncated HBx reduces doxorubicin cytotoxicity via ABCB1 upregulation in Huh-7 hepatocellular carcinoma cells

  • Jegal, Myeong-Eun;Jung, Seung-Youn;Han, Yu-Seon;Kim, Yung-Jin
    • BMB Reports
    • /
    • 제52권5호
    • /
    • pp.330-335
    • /
    • 2019
  • Hepatitis B virus (HBV) encoding the HBV x protein (HBx) is a known causative agent of hepatocellular carcinoma (HCC). Its pathogenic activities in HCC include interference with several signaling pathways associated with cell proliferation and apoptosis. Mutant C-terminal-truncated HBx isoforms are frequently found in human HCC and have been shown to enhance proliferation and invasiveness leading to HCC malignancy. We investigated the molecular mechanism of the reduced doxorubicin cytotoxicity by C-terminal truncated HBx. Cells transfected with C-terminal truncated HBx exhibited reduced cytotoxicity to doxorubicin compared to those transfected with full-length HBx. The doxorubicin resistance of cells expressing C-terminal truncated HBx correlated with upregulation of the ATP binding cassette subfamily B member 1(ABCB1) transporter, resulting in the enhanced efflux of doxorubicin. Inhibiting the activity of ABCB1 and silencing ABCB1 expression by small interfering ribonucleic acid (siRNA) increased the cytotoxicity of doxorubicin. These results indicate that elevated ABCB1 expression induced by C-terminal truncation of HBx was responsible for doxorubicin resistance in HCC. Hence, co-treatment with an ABCB1 inhibitor and an anticancer agent may be effective for the treatment of patients with liver cancer containing the C-terminal truncated HBx.

Hepatitis B virus X protein enhances liver cancer cell migration by regulating calmodulin-associated actin polymerization

  • Kim, Mi-jee;Kim, Jinchul;Im, Jin-su;Kang, Inho;Ahn, Jeong Keun
    • BMB Reports
    • /
    • 제54권12호
    • /
    • pp.614-619
    • /
    • 2021
  • Hepatitis B virus (HBV) infection is a major cause of hepatocellular carcinoma (HCC), which is a highly aggressive cancer. HBV X protein (HBx), one of four HBV gene products, plays pivotal roles in the development and metastasis of HCC. It has been reported that HBx induces liver cancer cell migration and reorganizes actin cytoskeleton, however the molecular basis for actin cytoskeleton reorganization remains obscure. In this study, we for the first time report that HBx promotes actin polymerization and liver cancer cell migration by regulating calcium modulated protein, calmodulin (CaM). HBx physically interacts with CaM to control the level of phosphorylated cofilin, an actin depolymerizing factor. Mechanistically, HBx interacts with CaM, liberates Hsp90 from its inhibitory partner CaM, and increases the activity of Hsp90, thus activating LIMK1/cofilin pathway. Interestingly, the interaction between HBx and CaM is calcium-dependent and requires the CaM binding motif on HBx. These results indicate that HBx modulates CaM which plays a regulatory role in Hsp90/LIMK1/cofilin pathway of actin reorganization, suggesting a new mechanism of HBV-induced HCC metastasis specifically derived by HBx.

Structural characterization of HBx-interacting protein using NMR spectroscopy

  • Lee Young-Tae;Kim Byoung-Kook;Kim Key-Sun;Choi Byong-Seok
    • 한국자기공명학회논문지
    • /
    • 제9권2호
    • /
    • pp.122-137
    • /
    • 2005
  • The hepatitis B virus X protein (HBx) is highly linked with liver diseases and the development of hepatocellular carcinoma. HBx-interacting protein (XIP) has been shown to abolish the transactivation functions of HBx. Here, we define the structural characteristics and HBx binding properties of XIP. Under physiological conditions, XIP was composed mainly of random-coils but significant helicity was induced in the hydrophobic condition. NMR spectroscopy defined the secondary structure of XIP in the presence of sodium dodecyl sulfate. Four putative helices were mapped to the amino acids 8-12, 32-38, 42-54 and 82-91. Any deletion of defined putative helices in XIP led to loss of binding to HBx, and truncated mutant lacking last putative helix decreased helicity more than that it could. Our results suggest that XIP requires its entire sequence for HBx binding and it may be under drastic conformational change when binds to HBx.

  • PDF

Hepatitis B virus X Protein Promotes Liver Cancer Progression through Autophagy Induction in Response to TLR4 Stimulation

  • Juhee Son;Mi-Jeong Kim;Ji Su Lee;Ji Young Kim;Eunyoung Chun;Ki-Young Lee
    • IMMUNE NETWORK
    • /
    • 제21권5호
    • /
    • pp.37.1-37.17
    • /
    • 2021
  • Hepatitis B virus X (HBx) protein has been reported as a key protein regulating the pathogenesis of HBV-induced hepatocellular carcinoma (HCC). Recent evidence has shown that HBx is implicated in the activation of autophagy in hepatic cells. Nevertheless, the precise molecular and cellular mechanism by which HBx induces autophagy is still controversial. Herein, we investigated the molecular and cellular mechanism by which HBx is involved in the TRAF6-BECN1-Bcl-2 signaling for the regulation of autophagy in response to TLR4 stimulation, therefore influencing the HCC progression. HBx interacts with BECN1 (Beclin 1) and inhibits the association of the BECN1-Bcl-2 complex, which is known to prevent the assembly of the pre-autophagosomal structure. Furthermore, HBx enhances the interaction between VPS34 and TRAF6-BECN1 complex, increases the ubiquitination of BECN1, and subsequently enhances autophagy induction in response to LPS stimulation. To verify the functional role of HBx in liver cancer progression, we utilized different HCC cell lines, HepG2, SK-Hep-1, and SNU-761. HBx-expressing HepG2 cells exhibited enhanced cell migration, invasion, and cell mobility in response to LPS stimulation compared to those of control HepG2 cells. These results were consistently observed in HBx-expressed SK-Hep-1 and HBx-expressed SNU-761 cells. Taken together, our findings suggest that HBx positively regulates the induction of autophagy through the inhibition of the BECN1-Bcl-2 complex and enhancement of the TRAF6-BECN1-VPS34 complex, leading to enhance liver cancer migration and invasion.

B형 간염 바이러스의 X단백질에 대한 특이항체의 세포 내 발현 (Expression of Intracellular Single Chain Antibody Specific to Hepatitis B Virus X Protein)

  • 진영희;김형일;박선
    • IMMUNE NETWORK
    • /
    • 제3권1호
    • /
    • pp.23-28
    • /
    • 2003
  • Background: Intracellular antibody specific to hepatitis B virus X protein (HBx) might be useful for studying the role of HBx in hepatocellular carcinogenesis and HBV replication. Methods: With variable region genes for H7 monoclonal anti-HBx Ab, we constructed a vector for bacterial expression of single chain Ab (scFv) and a vector for eukaryotic cell expression of it. The expression of H7 scFv and its binding activity against HBx was examined by immunoblotting and immunofluorescence microscopy. Results: H7 scFv expressed in bacterial cells retained reactivity to HBx. We demonstrated its intracytoplasmic expression in CosM6 eukaryotic cells. Conclusion: This is the first study showing the expression of intracellular anti-HBx Ab in eukaryotic cells. H7 scFv may be a good tool to study the function of HBx in HBV infection.

Hepatitis B Virus X Protein Stimulates Virus Replication Via DNA Methylation of the C-1619 in Covalently Closed Circular DNA

  • Lee, Hyehyeon;Jeong, Hyerin;Lee, Sun Young;Kim, Soo Shin;Jang, Kyung Lib
    • Molecules and Cells
    • /
    • 제42권1호
    • /
    • pp.67-78
    • /
    • 2019
  • Methylation of HBV cccDNA has been detected in vivo and in vitro; however, the mechanism and its effects on HBV replication remain unclear. HBx derived from a 1.2-mer HBV replicon upregulated protein levels and enzyme activities of DNA methyltransferase 1 (DNMT1), 3a, and 3b, resulting in methylation of the negative regulatory region (NRE) in cccDNA, while none of these effects were observed with an HBx-null mutant. The HBx-positive HBV cccDNA expressed higher levels of HBc and produced about 4-fold higher levels of HBV particles than those from the HBx-null counterpart. For these effects, HBx interrupted the action of NRE binding protein via methylation of the C-1619 within NRE, resulting in activation of the core promoter. Treatment with 5-Aza-2′dC or DNMT1 knock-down drastically impaired the ability of HBx to activate the core promoter and stimulate HBV replication in 1.2-mer HBV replicon and in vitro infection systems, indicating the positive role of HBx-mediated cccDNA methylation in HBV replication.

Hepatitis B virus X protein enhances NFκB activity through cooperating with VBP1

  • Kim, Sang-Yong;Kim, Jin-Chul;Kim, Jeong-Ki;Kim, Hye-Jin;Lee, Hee-Min;Choi, Mi-Sun;Maeng, Pil-Jae;Ahn, Jeong-Keun
    • BMB Reports
    • /
    • 제41권2호
    • /
    • pp.158-163
    • /
    • 2008
  • Hepatitis B virus X protein (HBx) is essential for hepatitis B virus infection and exerts a pleiotropic effect on various cellular machineries. HBx has been also demonstrated as an indirect transcriptional transactivator of various different viral and cellular promoters. In addition, HBx is involved in the development of various liver diseases including hepatocellular carcinoma. However the mechanism of HBx in hepatocellular carcinogenesis remains largely unknown. In this study, to identify possible new cellular proteins interacting with HBx, we carried out yeast two-hybrid assay. We obtained several possible cellular partners including VBP1, a binding factor for VHL tumor suppressor protein. The direct physical interaction between HBx and VBP1 in vitro and in vivo was confirmed by immunoprecipitation assay. In addition, we found that VBP1 facilitates HBx-induced $NF{\kappa}B$ activation and cell proliferation. These results implicate the important role of HBx in the development of hepatocellular carcinoma through its interaction with VBP1.

Expression of Hepatitis B Virus X Protein in Hepatocytes Suppresses CD8+ T Cell Activity

  • Lee, Mi Jin;Jin, Young-hee;Kim, Kyongmin;Choi, Yangkyu;Kim, Hyoung-Chin;Park, Sun
    • IMMUNE NETWORK
    • /
    • 제10권4호
    • /
    • pp.126-134
    • /
    • 2010
  • Background: $CD8^+$ T cells contribute to the clearance of Hepatitis B virus (HBV) infection and an insufficient $CD8^+$ T cell response may be one of the major factors leading to chronic HBV infection. Since the HBx antigen of HBV can up-regulate cellular expression of several immunomodulatory molecules, we hypothesized that HBx expression in hepatocytes might affect $CD8^+$ T cell activity. Methods: We analyzed the activation and apoptosis of $CD8^+$ T cells co-cultured with primary hepatocytes rendered capable of expressing HBx by recombinant baculovirus infection. Results: Expression of HBx in hepatocytes induced low production of $interferon-{\gamma}$ and apoptosis of CD8+ T cells, with no effect on CD8 T cell proliferation. However, transcriptional levels of H-2K, ICAM-1 and PD-1 ligand did not correlate with HBx expression in hepatocytes. Conclusion: Our results suggest that HBx may inhibit $CD8^+$ T cell response by regulation of $interferon-{\gamma}$ production and apoptosis.

B형 간염 바이러스 X 단백질과 C형 간염 바이러스의 코어 단백질에 의한 cisplatin-매개성 세포 예정사의 협조적 촉진 (Cooperative stimulation of cisplatin-mediated apoptosis by hepatitis B virus X Protein and hepatitis C virus core Protein)

  • 권현진;장경립
    • 생명과학회지
    • /
    • 제17권6호통권86호
    • /
    • pp.766-771
    • /
    • 2007
  • B형 간염 바이러스(HBV)와 C형 간염 바이러스(HCV)에 함께 감염되면 단독 감염의 경우보다 더 심각한 간질환이 유발되고 간암으로의 발전 가능성도 높아진다. 본 연구에서는 HBV의 X단백질(HBx)과 HCV의 코어 단백질이 인간 간암세포주인 HepG2세포에서 p53의 양을 협조적으로 증가시킨다는 것을 보여 주었다. 이로 인하여 세포예정사를 촉진하는 Bax 단백질의 발현이 더 증가하는 반면에 세포예정사를 억제하는 Bcl2의 발현은 더 억제됨이 관찰되었다. 그러나 이러한 효과들은 p53-음성인 Hep3B 세포에서는 관찰되지 않았다. 나아가 HBx와 코어 단백질은 HepG2의 cisplatin-매개성 세포예정사를 협조적으로 증가시키는 반면에 Hep3B에서는 이러한 효과가 나타나지 않았다. 이러한 연구 결과들은 HBV와 HCV가 동시에 감염되었을 경우에 나타나는 임상적인 소견을 이해하고 세포예정사에 미치는 HBx와 코어 단백질의 영향에 대한 기존의 상충적인 연구결과들을 해석하는데 도움을 줄 수 있다.