• Title/Summary/Keyword: HAZ Toughness

Search Result 109, Processing Time 0.022 seconds

Effects of Nitrogen on the Microstructure and Toughness of HAZ in Ti-Containing Steel (Ti 첨가강 열영향부 조직과 인성에 미치는 질소의 영향)

  • 김병철;방국수
    • Journal of Welding and Joining
    • /
    • v.20 no.3
    • /
    • pp.91-97
    • /
    • 2002
  • Variation of HAZ toughness of Ti-containing steel with nitrogen content was investigated and interpreted in terms of its microstructure and the amount of soluble nitrogen present. The amounts of Ti and Al combined in TiN and AlN, respectively, in HAZ at $1400^{\circ}C$ peak temperature were less than those in base plate; 55~88% in TiN and 21~28% in AlN, indicating the dissolution of nitrifies in HAZ. The calculated amounts of soluble nitrogen using the thermodynamic analysis showed a good agreement with the measured values in other experiment. Therefore, the analysis can be used to estimate the amount of soluble nitrogen in HAZ. Simulated HAZ toughness was influenced not only by its microstructure but also by the amount of soluble nitrogen present after the formation of BN during the cooling cycle of welding. It showed maximum value when the nitrogen content is in stoichiometric ratio with titanium content, showing that soluble nitrogen in HAZ is detrimental to its toughness.

Weldability of 12% Cr steel by thermally simulated HAZ (열 영향부의 시물레이션에 의한 12% Cr강의 용접성 평가)

  • 김재도
    • Journal of Welding and Joining
    • /
    • v.4 no.2
    • /
    • pp.40-46
    • /
    • 1986
  • This investigation is concerned with the toughness and microstructure of manneristically simulated HAZ in 12% Cr steel. Unnotched specimens were subjected to weld thermal cycles a weld simulator. The parameters-peak temperatures, cooling rate, influence of PWHT and plastic deformation were considered. After weld simulation, the specimens were heat-treated, V-notched and impact tested. An optical metallographic examination was performed to correlate the HAZ toughness with microstructure. Also a fractographic examination was done to obtain information on the fracture mode. The toughness of the coarse grained zone and the part of HAZ subjected to a peak temperature range 700-800.deg. C are lower than the other parts. However, they are still high enough. The double PWHT cycle could not improve the HAZ toughness in present study. However, if the first PWHT is conducted before the work piece is cooled below $M_f$, it is expected that the double PWHA may be beneficial to the toughness of the HAZ. It is also expected that martensitic welding can be used on production welds.

  • PDF

Study on Fracture Toughness and Heat Input in Weld HAZ of Cr-Mo Steel (I) (welding structure) (Cr-Mo강 용접열영향부의 파괴인성과 용접입열량에 관한 연구(I) (HAZ 고유조직을 중심으로))

  • 임재규;정세희
    • Journal of Welding and Joining
    • /
    • v.2 no.2
    • /
    • pp.54-61
    • /
    • 1984
  • Construction of welding structure is greatly dependent upon welding heat cycle. Fracture toughness is decreased remarkablely due to coarse grained HAZ and inequal residual stress of three dimensions to originate in welding. Post weld heat treatment(PWHT) is carried out to increase the fracture toughness of HAZ and to remove the residual stress. There occur some problem such as toughness decrement and stress relief cracking(SRC) in the coarse grained HAZ subject to the effect of tempering treatment. Therefore, in this paper, the effect of heat inputs affecting cooling rate and PWHT under the no stress on fracture toughness were evaluated by crack opening displacement (COD), SEM and micro-hardness test. Experimental results are as follows; 1. Fracture toughness of weld HAZ is dependent upon weld heat cycle and it is decreased with increment of heat input, but the degree of improvement of fracture toughness after PWHT was linearly increased with heat input. 2. Hardness of the parent metal is not changed, but the softening of coarse grained HAZ is remarkable due to PWHT. 3. Fracture surface of as-weld show the perfect brittle fracture with the cleavage fracture, but after PWHT they appear the ductile fracture surface with dimple.

  • PDF

Effect of weld thermal cycle on the HAZ toughness and microstructure of a Ti-oxide bearing steel (Ti산화물강의 HAZ인성 및 미세조직에 미치는 용접열 cycle의 영향)

  • 정홍철;한재광;방국수
    • Journal of Welding and Joining
    • /
    • v.14 no.2
    • /
    • pp.46-56
    • /
    • 1996
  • HAZ impact toughness of Ti-oxide steel was investigated and compared to that of a conventional Ti-nitride steel. Toughness variations of each steel with weld peak temperatures and cooling rates were interpreted with microstructural transformation characteristics. In contrast to Ti-nitride steel showing continuous decrease in HAZ toughness with peak temperature, Ti-oxide steel showed increase in HAZ toughness above $1400^{\circ}C$ peak temperature. The HAZ microstructure of the Ti-oxide steel is characterized by the formation of intragranular ferrite plate, which was found to start from Ti-oxide particles dispersed in the matrix of the steel. Large austenite grain size above $1400^{\circ}C$ promoted intragranular ferrite plate formation in Ti-oxide steel while little intragranular ferrite plate was formed in Ti-nitride steel because of dissolution of Ti-nitrides. Ti-oxides in the Ti-oxide steel usually contain MnS and have crystal structures of TiO and/or $Ti_2O_3$.

  • PDF

The effects of PWHT on the toughness of weld HAZ in Cu-containing HSLA-100 steel (Cu를 함유한 HSLA-100강 용접 열 영향부의 인성에 미치는 후열처리의 영향)

  • 박태원;심인옥;김영우;강정윤
    • Journal of Welding and Joining
    • /
    • v.13 no.4
    • /
    • pp.55-64
    • /
    • 1995
  • A study was made to examine the effects of postweld heat treatment(PWHT) on the toughness and microstructures in the weld heat affected zone(HAZ) of Cu-bearing HSLA-100 steel. The Gleeble thermal/mechanical simulator was used to simulate the weld HAZ. The details between toughness and PWHT of HAZ were studied by impact test, optical microscopy(O.M.), scanning electron microscopy (SEM), transmission electron microscopy(TEM) and differential scanning calorimetry(DSC). The decrease of HAZ toughness in single thermal cycle comparing to base plate is ascribed to the coarsed-grain formed by heating to 1350.deg.C. The increase of HAZ toughness in double thermal cycle comparine to single thermal cycle is due to the fine ferrite(.alpha.) grain transformed from austenite(.gamma.)formed by heating to .alpha./.gamma. two phase region. Cu precipitated during aging for increasing the strength of base metal is dissolved during single thermal cycle to 1350.deg.C and is precipitated little on cooling and heating during subsequent weld thermal cycle. It precipitates by introducing PWHT. Thus, the decrease of toughness in triple thermal cycle of $T_{p1}$ = 1350.deg.C, $T_{p2}$ = 800.deg.C and $T_{p3}$ = 500.deg.C does not occur owing to the precipitation of Cu. The behaviors of Cu=precipitates in HAZ is similar to that in base plate. PWHT at 550.deg.C shows highest hardness and lowest toughness, whereas PWHT at 650.deg.C shows reasonable toughness, which improves the toughness of as-welded state.state.

  • PDF

The Effects of TiN Particles on the HAZ Microstructure and Toughness in High Nitrogen TiN Steel

  • Jeong, H.C.;An, Y.H.;Choo, W.Y.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.1
    • /
    • pp.25-28
    • /
    • 2002
  • In the coarse grain HAZ adjacent to the fusion line, most of the TiN particles in conventional Ti added steel are dissolved and austenite grain growth is easily occurred during welding process. To avoid this difficulty, thermal stability of TiN particle is improved by increasing the nitrogen content in steel. In this study, the effect of hlgh nitrogen TiN particle on preventing austenite grain growth in HAZ was investigated. Increased thermal stability of TiN particle is helpful for preventing the austenite grain growth by pinning effect. High nitrogen TiN particle in simulated HAZ were not dissolved even at high temperature such as 1400'E and prevented the austenite grain growth in simulated HAZ. Owing to small austenite grain size in HAZ the width of coarse grain HAZ in high nitrogen TiN steel was decreased to 1/10 of conventional TiN steel. Even high heat input welding, the microstructure of coarse grain HAZ consisted of fine polygonal ferrite and pearlite and toughness of coarse grain HAZ was significantly improved.

  • PDF

Impact Toughness and Softening of the Heat Affected Zone of High Heat Input Welded 390 MPa Yield Strength Grade TMCP Steel (항복강도 390 MPa급 가공열처리강 대입열용접 열영향부 충격인성 및 연화현상)

  • Bang, Kook-Soo;Ahn, Young-Ho;Jeong, Hong-Chul
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.11
    • /
    • pp.796-804
    • /
    • 2018
  • The Charpy impact toughness of the heat affected zone (HAZ) of electro gas welded 390 MPa yield strength grade steel, manufactured by a thermo mechanically controlled process, was investigated. The effects of added Nb on the toughness of the steel and the factors influencing scatter in toughness are discussed in the present work. It was observed that adding Nb to the steel led to the deterioration of HAZ toughness. The presence of soluble Nb in the HAZ increased its hardenability and resulted in a larger amount of low toughness bainitic microstructure. Microstructural observations in the notch root area revealed the significant role of different microstructures in the area. In the presence of a larger amount of bainitic microstructures, the HAZ exhibited a lower Charpy toughness with a larger scatter in toughness. A softened zone with a lower hardness than the base metal was formed in the HAZ. However, theoretical analysis revealed that the presence of the zone might not be a problem in a real welded joint because of the plastic restraint effect enforced by surrounding materials.

Effects of M-A Constituents on Toughness in the ICCG HAZ of SA508-cl.3 Pressure Vessel Steel (SA508-cl.3강의 ICCG HAZ의 인성에 미치는 M-A Constituentsm의 영향)

  • 권기선;김주학;홍준화;이창희
    • Journal of Welding and Joining
    • /
    • v.17 no.3
    • /
    • pp.55-65
    • /
    • 1999
  • Metallurgical factors influencing toughness of the Intercritically Reheated Coarse-Grained Heat Affected Zone (ICCG HAZ) of multiple welded SA508-cl.3 Reactor Pressure Vessel Steel were evaluated. The recrystallized austenite formed along the prior austenite grain boundaries and late interfaced on heating to the intercritical range was transformed to bainite and/or martensite during cooling. The newly formed martensite always included some retained austenite(M-A constituents). The characteristics(amount, hardness, density, and size) of M-A constituents were found to be strongly associated with both peak temperature and cooling time(△t8/5(2)) of last pass. Toughness in the ICCG HAZ was deteriorated with increasing amount of M-A constituents which was increased with increasing the last peak temperature within the intercritical temperature range. Meanwhile, for the same intercritical peak temperature, toughness was decreased with increasing cooling time. When cooling time was short, the dominant factor influencing toughness of the ICCG HAZ was amount of M-A constituents. However, when cooling time was lengthened, the hardness difference between M-A constituents and softened matrix(tempered martensite) was found to be the dominant factor.

  • PDF

Microstructure and Toughness of Weld Heat-Affected Zone in Cu-containing HSLA-100 steel (Cu를 함유한 HSLA-100강 용접 열영향부의 미세 조직 및 인성)

  • Park, T.W.;Shim, I.O.;Kim, Y.W.;Kang, C.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.1
    • /
    • pp.53-64
    • /
    • 1995
  • A study was made to characterize the microstructures and mechanical properties of the base metal and the heat-affected zone(HAZ) in Cu-bearing HSLA-100 steel. The Gleeble thermal/mechanical simulator was used to simulated the weld HAZ. The relationship between microstructure and toughness of HAZ was studied by impact test, O. M, SEM, TEM, and DSC. The toughness requirement of military specification value was met in all test temperatures for the base metal. The decrease of HAZ toughness comparing to base plate is ascribed to the coarsed-grain and the formation of bainite. Obliquely sectioned Charpy specimens show that secondary crack propagate easily along bainite lath. Improved toughness(240J) at HAZ of $Tp_2=950^{\circ}C$ is due to the fine grain, and reasonable toughness(160~00J) in the intercritical reheated HZA is achieved by the addition of small amount of carbon which affects the formation of "M-A". Cu precipitated during ageing for increasing the strength of base metal is dissolved during single thermal cycle to $1,350^{\circ}C$ and is precipitated little on cooling and heating during subsequent weld thermal cycle. Thus, the decrease of toughness does not occur owing to the precipitation of Cu.

  • PDF

A Study on Hot Straining Embrittlement of Subcritical HAZ in Steel Weldments (강 용접 열영향부 취화역 의 열변형취화 에 관한 연구)

  • 정세희;김태영;임재규
    • Journal of Welding and Joining
    • /
    • v.3 no.2
    • /
    • pp.35-41
    • /
    • 1985
  • The fracture toughness of subcritical HAZ in the hot strained weldments of two structural steels(SB 41 and SA 537) has been investigated by COD test method and metallurgical study. The obtained results are summarized as follows; 1. The hot straining embitterment of subcritical HAZ depends on the hot straining amounts of notch tip, and the transition temperature( $T_{tr}$ ) increases with the accumulated hot straining amounts(.SIGMA. vertical bar .delta.$_{t}$vertical bar). 2. The fracture toughness of subcritical HAZ depends on materials and microstructure. The transition temperature( $T_{tr}$ ) of subcritical HAZ in SB 41 is almost same as that of parent material, however in SA 537 the temperature is higher than that of parent and lower than that of transformed HAZ. 3. The subcritical HAZ in SA 537 shows a higher toughness at small amounts of hot straining (.SIGMA. vertical bar .delta. $_{t}$vertical bar<0.3mm).mm).

  • PDF