Journal of the Korea Institute of Information and Communication Engineering
/
v.10
no.4
/
pp.674-679
/
2006
In this paper a gesture recognition system using 3D feature data is described. The system relies on a novel 3D sensor that generates a dense range mage of the scene. The main novelty of the proposed system, with respect to other 3D gesture recognition techniques, is the capability for robust recognition of complex hand postures such as those encountered in sign language alphabets. This is achieved by explicitly employing 3D hand features. Moreover, the proposed approach does not rely on colour information, and guarantees robust segmentation of the hand under various illumination conditions, and content of the scene. Several novel 3D image analysis algorithms are presented covering the complete processing chain: 3D image acquisition, arm segmentation, hand -forearm segmentation, hand pose estimation, 3D feature extraction, and gesture classification. The proposed system is tested in an application scenario involving the recognition of sign-language postures.
Ji, Seong Cheol;Kang, Sun Woo;Kim, Joon Seek;Joo, Hyonam
Journal of Institute of Control, Robotics and Systems
/
v.21
no.12
/
pp.1100-1108
/
2015
A camera-based real-time hand posture and gesture recognition system is proposed for controlling various devices inside automobiles. It uses an imaging system composed of a camera with a proper filter and an infrared lighting device to acquire images of hand-motion sequences. Several steps of pre-processing algorithms are applied, followed by a background normalization process before segmenting the hand from the background. The hand posture is determined by first separating the fingers from the main body of the hand and then by finding the relative position of the fingers from the center of the hand. The beginning and ending of the hand motion from the sequence of the acquired images are detected using pre-defined motion rules to start the hand gesture recognition. A set of carefully designed features is computed and extracted from the raw sequence and is fed into a decision tree-like decision rule for determining the hand gesture. Many experiments are performed to verify the system. In this paper, we show the performance results from tests on the 550 sequences of hand motion images collected from five different individuals to cover the variations among many users of the system in a real-time environment. Among them, 539 sequences are correctly recognized, showing a recognition rate of 98%.
The purpose of this study is to provide with basic information on application of hand acupuncture as a complementary and alternative therapy by giving some recognition of efficiency and effectiveness of hand acupuncture. And so, answers for questionnaires of 290 respondents were used for this research and collected from June 5 through 13, 1999 from adults twenty and over who were participating in the hand acupuncture training program in Seoul and had some direct experiences with hand acupuncture therapy, whatever they had been treated and/or had treated. To secure reliability of measurement tool. Cronbach'a has been calculated and Factor Analysis was done as Validity Analysis of question classification. Demograprucal characteristics of hand acupuncture experienced people and factors related to hand acupuncture experiences are calculated based on the real number and percentage. The degree of recognition of efficiency and effectiveness of hand acupuncture is made as average and standard deviation, while the degree of recognition of efficiency and effectiveness based on general characteristics come from one-way ANOVA. 1. According to socio-demographical analysis. the questioned could be classified firstly as age (40-49 : 32.5%. 30-39 : 24.9%. 50-59 : 21.9%. 60-69 : 14.7%. 20-29 : 6.0%). secondly gender (male 36.6%. female 63.4%). thirdly occupation (housewife: 43.8%. self-employed: 15.5%. company-employee: 14.8%). fourthly education (high school graduate: 41.9%, college graduate: 37.9%), and lastly monthly-income (1 to 2 million: 51.4%. 2 to 3 million: 20,3%) 2, As for the general aspects related to hand acupuncture. 80,0% of the respondents answered almost zero for the monthly average number of visit to hospital and 15.5% responded 1 to 2 visits, 6,2% of the respondents is complaining of a disorder of digestive system. 19,0% circulatory disease, 10.7% bad nervous system. By utilizing hand acupuncture, 84% of the questioned have following experiences in curing diseases: digestive system 47.3%, circulatory system 9.3%, nervous system 8.3%, 54,1% are curing 1 to 2 and 10.3% 3 to 4 patients on a daily basis with hand acupuncture. Research on the demerits of giving medical treatment with hand acupuncture shows 23,8% are feeling economic burden. 16.6% difficulty of learning and 16.2% weak theoretical backgrounds. 3. Among the efficiency recognition, possibility of general application is average 4,29 and simple treatment is 4,19. economic merits 4.36. possibility of establishment with supplementary and alternative medicine 4.17, medical effectiveness 4.09. 4, As a result of demographical analysis on the efficiency and effectiveness of hand acupuncture therapy, it appears that the recognition of efficiency based on occupation and the recognition of effectiveness based on monthly income are most significant to be noticed. In an orderly fashion. government-employee, self-employed, company-employee. and then housewife have perceived hand acupuncture very efficiently, And those who recognize hand acupuncture to be most effective are people earn 1 million to 2 million won a month, 5. The efficiency(p = .003) and effectiveness (p= .049) of hand acupuncture therapy by number of visit to hospital were statiscally significant, and effectiveness of hand acupuncture therapy by disease exist was statiscally significant (p= .033).
Park, Hanhoon;Choi, Junyeong;Park, Jong-Il;Moon, Kwang-Seok
Journal of Broadcast Engineering
/
v.18
no.3
/
pp.393-400
/
2013
Hand shape recognition is a fundamental technique for implementing natural human-computer interaction. In this paper, we discuss a method for effectively detecting a hand region in Kinect-based hand shape recognition. Since Kinect is a camera that can capture color images and infrared images (or depth images) together, both images can be exploited for the process of detecting a hand region. That is, a hand region can be detected by finding pixels having skin colors or by finding pixels having a specific depth. Therefore, after analyzing the performance of each, we need a method of properly combining both to clearly extract the silhouette of hand region. This is because the hand shape recognition rate depends on the fineness of detected silhouette. Finally, through comparison of hand shape recognition rates resulted from different hand region detection methods in general environments, we propose a high-performance hand region detection method.
Proceedings of the Korean Information Science Society Conference
/
2007.10c
/
pp.263-266
/
2007
We introduce a vision-based hand gesture recognition fer understanding musical time and patterns without extra special devices. We suggest a simple and reliable vision-based hand gesture recognition having two features First, the motion-direction code is proposed, which is a quantized code for motion directions. Second, the conducting feature point (CFP) where the point of sudden motion changes is also proposed. The proposed hand gesture recognition system extracts the human hand region by segmenting the depth information generated by stereo matching of image sequences. And then, it follows the motion of the center of the gravity(COG) of the extracted hand region and generates the gesture features such as CFP and the direction-code finally, we obtain the current timing pattern of beat and tempo of the playing music. The experimental results on the test data set show that the musical time pattern and tempo recognition rate is over 86.42% for the motion histogram matching, and 79.75% fer the CFP tracking only.
In this paper, we propose a real-time hand gesture recognition algorithm to eliminate the inconvenience of using hand controllers in VR applications. The user's 3D hand coordinate information is detected by leap motion sensor and then the coordinates are generated into two dimensional image. We classify hand gestures in real-time by learning the imaged 3D hand coordinate information through SSD(Single Shot multibox Detector) model which is one of CNN(Convolutional Neural Networks) models. We propose to use all 3 channels rather than only one channel. A sliding window technique is also proposed to recognize the gesture in real time when the user actually makes a gesture. An experiment was conducted to measure the recognition rate and learning performance of the proposed model. Our proposed model showed 99.88% recognition accuracy and showed higher usability than the existing algorithm.
Journal of Institute of Control, Robotics and Systems
/
v.12
no.9
/
pp.935-944
/
2006
EMG pattern recognition is essential for the control of a multifunction myoelectric hand. The main goal of this study is to develop an efficient feature projection method for EMC pattern recognition. To this end, we propose a linear supervised feature projection that utilizes linear discriminant analysis (LDA). We first perform wavelet packet transform (WPT) to extract the feature vector from four channel EMC signals. For dimensionality reduction and clustering of the WPT features, the LDA incorporates class information into the learning procedure, and finds a linear matrix to maximize the class separability for the projected features. Finally, the multilayer perceptron classifies the LDA-reduced features into nine hand motions. To evaluate the performance of LDA for the WPT features, we compare LDA with three other feature projection methods. From a visualization and quantitative comparison, we show that LDA has better performance for the class separability, and the LDA-projected features improve the classification accuracy with a short processing time. We implemented a real-time pattern recognition system for a multifunction myoelectric hand. In experiment, we show that the proposed method achieves 97.2% recognition accuracy, and that all processes, including the generation of control commands for myoelectric hand, are completed within 97 msec. These results confirm that our method is applicable to real-time EMG pattern recognition far myoelectric hand control.
To show the recognition of hand-sanitizer, we studied the answers of research questions where we got from the northern part of Seoul and Kyunggi Province. We had categorized two groups both industry-related people who work in restaurants, hygiene service shops, whole sales, government organizations, PC shops, factory-department stores and non industry-related people who work in schools, general offices for this study. 1. Hand sanitation level: Over 60% people washed hands 6 times a day. The group using water and soap was much bigger than the group using water for washing hands. For drying, people preferred wipe tissue, towels, clothes, non drying in that order. 2. Recognition of hand sanitizer and its usage experience: Most people(66.5%) did not know what hand sanitizer is, but they have positive attitude if they use this machine. 3. Place of hand sanitizer: The proper places to install were such public places as hospitals, restrooms, and restaurants. The fifties-group was the most frequently hand washing generation with over 9 times a day. 4. Comparison of recognition for hand-sanitizer by male and female: There were different results in each evaluation item by either male or female. The frequency and method of hand washing showed high in males, while females observed hand sanitization, installation requirements, installation areas, home installation, etc more than anything else.
Hand gesture is one of the most popular communication methods in everyday life. In human-computer interaction applications, hand gesture recognition provides a natural way of communication between humans and computers. There are mainly two methods of hand gesture recognition: glove-based method and vision-based method. In this paper, we propose a vision-based hand gesture recognition method using Kinect. By using the depth information is efficient and robust to achieve the hand detection process. The finger labeling makes the system achieve pose classification according to the finger name and the relationship between each fingers. It also make the classification more effective and accutate. Two kinds of gesture sets can be recognized by our system. According to the experiment, the average accuracy of American Sign Language(ASL) number gesture set is 94.33%, and that of general gestures set is 95.01%. Since our system runs in real-time and has a high recognition rate, we can embed it into various applications.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.14
no.9
/
pp.3924-3940
/
2020
Dynamic hand gesture recognition(d-HGR) plays an important role in human-computer interaction(HCI) system. With the growth of hand-pose estimation as well as 3D depth sensors, depth, and the hand-skeleton dataset is proposed to bring much research in depth and 3D hand skeleton approaches. However, it is still a challenging problem due to the low resolution, higher complexity, and self-occlusion. In this paper, we propose a hand-shape feature extraction(HSFE) network to produce robust hand-shapes. We build a hand-shape model, and hand-skeleton based on LSTM to exploit the temporal information from hand-shape and motion changes. Fusion between two models brings the best accuracy in dynamic hand gesture (DHG) dataset.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.