• Title/Summary/Keyword: HAND RECOGNITION

Search Result 1,049, Processing Time 0.031 seconds

A Study on Dynamic Hand Gesture Recognition Using Neural Networks (신경회로망을 이용한 동적 손 제스처 인식에 관한 연구)

  • 조인석;박진현;최영규
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.1
    • /
    • pp.22-31
    • /
    • 2004
  • This paper deals with the dynamic hand gesture recognition based on computer vision using neural networks. This paper proposes a global search method and a local search method to recognize the hand gesture. The global search recognizes a hand among the hand candidates through the entire image search, and the local search recognizes and tracks only the hand through the block search. Dynamic hand gesture recognition method is based on the skin-color and shape analysis with the invariant moment and direction information. Starting point and ending point of the dynamic hand gesture are obtained from hand shape. Experiments have been conducted for hand extraction, hand recognition and dynamic hand gesture recognition. Experimental results show the validity of the proposed method.

Hand Gesture Recognition using Improved Hidden Markov Models

  • Xu, Wenkai;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.7
    • /
    • pp.866-871
    • /
    • 2011
  • In this paper, an improved method of hand detecting and hand gesture recognition is proposed, it can be applied in different illumination condition and complex background. We use Adaptive Skin Threshold (AST) to detect the areas of hand. Then the result of hand detection is used to hand recognition through the improved HMM algorithm. At last, we design a simple program using the result of hand recognition for recognizing "stone, scissors, cloth" these three kinds of hand gesture. Experimental results had proved that the hand and gesture can be detected and recognized with high average recognition rate (92.41%) and better than some other methods such as syntactical analysis, neural based approach by using our approach.

Hand Expression Recognition for Virtual Blackboard (가상 칠판을 위한 손 표현 인식)

  • Heo, Gyeongyong;Kim, Myungja;Song, Bok Deuk;Shin, Bumjoo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1770-1776
    • /
    • 2021
  • For hand expression recognition, hand pose recognition based on the static shape of the hand and hand gesture recognition based on hand movement are used together. In this paper, we proposed a hand expression recognition method that recognizes symbols based on the trajectory of a hand movement on a virtual blackboard. In order to recognize a sign drawn by hand on a virtual blackboard, not only a method of recognizing a sign from a hand movement, but also hand pose recognition for finding the start and end of data input is also required. In this paper, MediaPipe was used to recognize hand pose, and LSTM(Long Short Term Memory), a type of recurrent neural network, was used to recognize hand gesture from time series data. To verify the effectiveness of the proposed method, it was applied to the recognition of numbers written on a virtual blackboard, and a recognition rate of about 94% was obtained.

Histogram Based Hand Recognition System for Augmented Reality (증강현실을 위한 히스토그램 기반의 손 인식 시스템)

  • Ko, Min-Su;Yoo, Ji-Sang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.7
    • /
    • pp.1564-1572
    • /
    • 2011
  • In this paper, we propose a new histogram based hand recognition algorithm for augmented reality. Hand recognition system makes it possible a useful interaction between an user and computer. However, there is difficulty in vision-based hand gesture recognition with viewing angle dependency due to the complexity of human hand shape. A new hand recognition system proposed in this paper is based on the features from hand geometry. The proposed recognition system consists of two steps. In the first step, hand region is extracted from the image captured by a camera and then hand gestures are recognized in the second step. At first, we extract hand region by deleting background and using skin color information. Then we recognize hand shape by determining hand feature point using histogram of the obtained hand region. Finally, we design a augmented reality system by controlling a 3D object with the recognized hand gesture. Experimental results show that the proposed algorithm gives more than 91% accuracy for the hand recognition with less computational power.

Hand Gesture Recognition using Optical Flow Field Segmentation and Boundary Complexity Comparison based on Hidden Markov Models

  • Park, Sang-Yun;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.4
    • /
    • pp.504-516
    • /
    • 2011
  • In this paper, we will present a method to detect human hand and recognize hand gesture. For detecting the hand region, we use the feature of human skin color and hand feature (with boundary complexity) to detect the hand region from the input image; and use algorithm of optical flow to track the hand movement. Hand gesture recognition is composed of two parts: 1. Posture recognition and 2. Motion recognition, for describing the hand posture feature, we employ the Fourier descriptor method because it's rotation invariant. And we employ PCA method to extract the feature among gesture frames sequences. The HMM method will finally be used to recognize these feature to make a final decision of a hand gesture. Through the experiment, we can see that our proposed method can achieve 99% recognition rate at environment with simple background and no face region together, and reduce to 89.5% at the environment with complex background and with face region. These results can illustrate that the proposed algorithm can be applied as a production.

A Novel Method for Hand Posture Recognition Based on Depth Information Descriptor

  • Xu, Wenkai;Lee, Eung-Joo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.763-774
    • /
    • 2015
  • Hand posture recognition has been a wide region of applications in Human Computer Interaction and Computer Vision for many years. The problem arises mainly due to the high dexterity of hand and self-occlusions created in the limited view of the camera or illumination variations. To remedy these problems, a hand posture recognition method using 3-D point cloud is proposed to explicitly utilize 3-D information from depth maps in this paper. Firstly, hand region is segmented by a set of depth threshold. Next, hand image normalization will be performed to ensure that the extracted feature descriptors are scale and rotation invariant. By robustly coding and pooling 3-D facets, the proposed descriptor can effectively represent the various hand postures. After that, SVM with Gaussian kernel function is used to address the issue of posture recognition. Experimental results based on posture dataset captured by Kinect sensor (from 1 to 10) demonstrate the effectiveness of the proposed approach and the average recognition rate of our method is over 96%.

MPEG-U-based Advanced User Interaction Interface Using Hand Posture Recognition

  • Han, Gukhee;Choi, Haechul
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.4
    • /
    • pp.267-273
    • /
    • 2016
  • Hand posture recognition is an important technique to enable a natural and familiar interface in the human-computer interaction (HCI) field. This paper introduces a hand posture recognition method using a depth camera. Moreover, the hand posture recognition method is incorporated with the Moving Picture Experts Group Rich Media User Interface (MPEG-U) Advanced User Interaction (AUI) Interface (MPEG-U part 2), which can provide a natural interface on a variety of devices. The proposed method initially detects positions and lengths of all fingers opened, and then recognizes the hand posture from the pose of one or two hands, as well as the number of fingers folded when a user presents a gesture representing a pattern in the AUI data format specified in MPEG-U part 2. The AUI interface represents a user's hand posture in the compliant MPEG-U schema structure. Experimental results demonstrate the performance of the hand posture recognition system and verified that the AUI interface is compatible with the MPEG-U standard.

Hierarchical Hand Pose Model for Hand Expression Recognition (손 표현 인식을 위한 계층적 손 자세 모델)

  • Heo, Gyeongyong;Song, Bok Deuk;Kim, Ji-Hong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.10
    • /
    • pp.1323-1329
    • /
    • 2021
  • For hand expression recognition, hand pose recognition based on the static shape of the hand and hand gesture recognition based on the dynamic hand movement are used together. In this paper, we propose a hierarchical hand pose model based on finger position and shape for hand expression recognition. For hand pose recognition, a finger model representing the finger state and a hand pose model using the finger state are hierarchically constructed, which is based on the open source MediaPipe. The finger model is also hierarchically constructed using the bending of one finger and the touch of two fingers. The proposed model can be used for various applications of transmitting information through hands, and its usefulness was verified by applying it to number recognition in sign language. The proposed model is expected to have various applications in the user interface of computers other than sign language recognition.

Development of a Hand~posture Recognition System Using 3D Hand Model (3차원 손 모델을 이용한 비전 기반 손 모양 인식기의 개발)

  • Jang, Hyo-Young;Bien, Zeung-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.219-221
    • /
    • 2007
  • Recent changes to ubiquitous computing requires more natural human-computer(HCI) interfaces that provide high information accessibility. Hand-gesture, i.e., gestures performed by one 'or two hands, is emerging as a viable technology to complement or replace conventional HCI technology. This paper deals with hand-posture recognition. Hand-posture database construction is important in hand-posture recognition. Human hand is composed of 27 bones and the movement of each joint is modeled by 23 degrees of freedom. Even for the same hand-posture,. grabbed images may differ depending on user's characteristic and relative position between the hand and cameras. To solve the difficulty in defining hand-postures and construct database effective in size, we present a method using a 3D hand model. Hand joint angles for each hand-posture and corresponding silhouette images from many viewpoints by projecting the model into image planes are used to construct the ?database. The proposed method does not require additional equations to define movement constraints of each joint. Also using the method, it is easy to get images of one hand-posture from many vi.ewpoints and distances. Hence it is possible to construct database more precisely and concretely. The validity of the method is evaluated by applying it to the hand-posture recognition system.

  • PDF

Robot User Control System using Hand Gesture Recognizer (수신호 인식기를 이용한 로봇 사용자 제어 시스템)

  • Shon, Su-Won;Beh, Joung-Hoon;Yang, Cheol-Jong;Wang, Han;Ko, Han-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.4
    • /
    • pp.368-374
    • /
    • 2011
  • This paper proposes a robot control human interface using Markov model (HMM) based hand signal recognizer. The command receiving humanoid robot sends webcam images to a client computer. The client computer then extracts the intended commanding hum n's hand motion descriptors. Upon the feature acquisition, the hand signal recognizer carries out the recognition procedure. The recognition result is then sent back to the robot for responsive actions. The system performance is evaluated by measuring the recognition of '48 hand signal set' which is created randomly using fundamental hand motion set. For isolated motion recognition, '48 hand signal set' shows 97.07% recognition rate while the 'baseline hand signal set' shows 92.4%. This result validates the proposed hand signal recognizer is indeed highly discernable. For the '48 hand signal set' connected motions, it shows 97.37% recognition rate. The relevant experiments demonstrate that the proposed system is promising for real world human-robot interface application.