• 제목/요약/키워드: HANA4 alloy

검색결과 10건 처리시간 0.02초

핵연료피복관용 Zr 합금의 제조공정에 따른 미세조직 및 부식거동 (Microstructure and Corrosion Behavior of Zr Alloys with Manufacturing Process)

  • 김현길;최병권;김규태;김선두;박찬현;정용환
    • 열처리공학회지
    • /
    • 제18권5호
    • /
    • pp.288-296
    • /
    • 2005
  • The corrosion behaviors of Zr-based alloys were very sensitive to their microstructures which were determined by manufacturing process. The specimens of Zr-based alloy named as HANA-4 for nuclear fuel cladding were investigated in order to get the optimized manufacturing process such as the intermediate annealing temperature and cold working steps after the ${\beta}$ quenching. From the microstructural analysis, cold worked microstructure of the samples was changed to the recrystallized microstructure by performed process. The corrosion behaviors of HANA-4 alloy were affected by the different manufacturing process. The ${\beta}$-Zr phase was formed in the matrix and the Nb concentration in the ${\beta}$-Zr phase was increased as progressing the manufacturing process. So, it was found that the corrosion rate of HANA-4 alloy was affected by the Nb concentration in the matrix.

산화물 분산강화 표면처리에 따른 지르코늄 피복관의 기계적 강도 (Effects of Surface Treatment using Oxide-Dispersion-Strengthening on the Mechanical Properties of Zr-based Fuel Cladding Tubes)

  • 정양일;김일현;김현길;장훈;이승재
    • 한국재료학회지
    • /
    • 제29권4호
    • /
    • pp.271-276
    • /
    • 2019
  • Oxide-dispersion-strengthened (ODS) alloy has been developed to increase the mechanical strength of metallic materials; such an improvement can be realized by distributing fine oxide particles within the material matrix. In this study, the ODS layer was formed in the surface region of Zr-based alloy tubes by laser beam treatment. Two kinds of Zr-based alloys with different alloying elements and microstructures were used: KNF-M (recrystallized) and HANA-6 (partial recrystallized). To form the ODS layer, $Y_2O_3$-coated tubes were scanned by a laser beam, which induced penetration of $Y_2O_3$ particles into the substrates. The thickness of the ODS layer varied from 20 to $55{\mu}m$ depending on the laser beam conditions. A heat affected zone developed below the ODS layer; its thickness was larger in the KNF-M alloy than in the HANA-6 alloy. The ring tensile strengths of the KNF-M and HANA-6 alloy samples increased more than two times and 20-50%, respectively. This procedure was effective to increase the strength while maintaining the ductility in the case of the HANA-6 alloy samples; however, an abrupt brittle facture was observed in the KNF-M alloy samples. It is considered that the initial microstructure of the materials affects the formation of ODS and the mechanical behavior.

핵연료 피복관의 산세 공정 시 Nb 함량에 따른 SMUT 특성 (Evaluation of SMUT Properties according to Nb Content in the Pickling Process of Nuclear Fuel Cladding Tube)

  • 문종한;이영준;이진행;홍종원;이종현
    • 한국재료학회지
    • /
    • 제29권8호
    • /
    • pp.483-490
    • /
    • 2019
  • Currently, the Korean nuclear industry uses ZIRLO as material for nuclear fuel cladding(zirconium alloy). KEPCO Nuclear Fuel is in the process of developing a HANA alloy to enable domestic production of cladding. Cladding manufacture involves multistage heat treatments and pickling processes, the latter of which is vital for the removal of defects and impurities on the cladding surface. SMUT that forms on the cladding surface during such pickling process is a source of surface defects during heat treatment and post-treatment processes if not removed. This study analyzes ZIRLO, HANA-4, and HANA-6 alloy claddings to extensively study the SEM/EDS, XRD, and particle size characteristics of SMUT, which are second phase particles that are formed on the cladding surface during pickling processes. Using the analysis results, this study observes SMUT formation characteristics according to Nb concentration in Zr alloys during the washing process following the pickling process. In addition, this study observes SMUT removal characteristics on cladding surfaces according to concentrations of nitric acid and hydrofluoric acid in the acid solution.

Zr 피복관의 ISCC 특성에 미치는 미세조직 및 첨가원소의 영향 (Effect of Microstructure and Alloying Element on the ISCC Characteristics of Zr Cladding)

  • 박상윤;최병권;이명호;김준환;정용환
    • 열처리공학회지
    • /
    • 제18권3호
    • /
    • pp.164-171
    • /
    • 2005
  • Iodine-Induced Stress Corrosion Cracking (ISCC) properties of Zircaloy-4 and HANA4 developed in KAERI for the high burn-up nuclear fuel cladding were evaluated. To confirm the effect of final heat treatment on ISCC resistance of Zr-alloy, stress relieved and recrystallized specimens were prepared and tested. With the pre-cracked specimen at internal surface, ISCC crack propagation rates and threshold stress intensity factor ($K_{ISCC}$) based on the fracture mechanics were measured by internal pressurization test at $350^{\circ}C$ in iodine environment. $K_{ISCC}$ of Zircaloy-4 and HANA4 cladding were $3.3MPa{\cdot}m^{1/2}$ and $4.4MPa{\cdot}m^{1/2}$, respectively. Pitting corrosion at the crack surface was observed and it seemed that TG crack propagation was derived from the pitting.

HANA 지르코늄 핵연료피복관의 크립거동에 미치는 최종 열처리 및 응력의 영향 (Effect of Final Annealing and Stress on Creep Behavior of HANA Zirconium Fuel Claddings)

  • 김현길;김준환;정용환
    • 열처리공학회지
    • /
    • 제18권4호
    • /
    • pp.235-241
    • /
    • 2005
  • Thermal creep properties of the advanced zirconium fuel claddings named by HANA alloys which were developed for high burn-up application were evaluated. The creep test of HANA cladding tubes was carried out by the internal pressurization method in temperature range from 350 to $400^{\circ}C$ and in the hoop stress range from 100 to 150 MPa. Creep tests were lasted up to 800 days, which showed the steady-state secondary creep rate. The creep resistance of HANA fuel claddings was affected by final annealing temperature and various factors, such as alloying element, applied stress and testing temperature. From the results the microstructure observation of the samples before and after creep test by using TEM, the dislocation density was increased in the sample of after creep test. The Sn as an alloying element was more effective in the creep resistance than other elements such as Nb, Fe, Cr and Cu due to solute hardening effect of Sn. In case of HANA fuel claddings, the improved creep resistance was obtained by the control of final heat treatment temperature as well as alloying element.

INVESTIGATION ON THE CORROSION BEHAVIOR OF HAHA-4 CLADDING BY OXIDE CHARACTERIZATION

  • Park, Jeong-Yong;Choi, Byung-Kwon;Jeong, Yong-Hwan
    • Nuclear Engineering and Technology
    • /
    • 제41권2호
    • /
    • pp.149-154
    • /
    • 2009
  • The microstructure, the corrosion behavior and the oxide properties were examined for Zr-1.5Nb-0.4Sn-0.2Fe-0.1Cr (HANA-4) alloys which were subjected to two different final annealing temperatures: $470^{\circ}C$ and $570^{\circ}C$. HANA-4 was shown to have $\ss$-enriched phase with a bcc crystal structure and Zr(Nb,Fe,Cr)$_2$ with a hcp crystal structure with $\ss$-enriched phase being more frequently observed compared with Zr(Nb,Fe,Cr)$_2$. The corrosion rate of HANA-4 was increased with an increase of the final annealing temperature in the PWR-simulating loop, $360^{\circ}C$ pure water and $400^{\circ}C$ steam conditions, which was correlated well with a reduction in the size of the columnar grains in the oxide/metal interface region. The oxide growth rate of HANA-4 was considerably affected by the alloy microstructure determined by the final annealing temperature.

핵연료 안내관용 지르코늄 합금의 강도 및 부식 성능에 미치는 제조공정 영향 (Manufacturing Process Effect on Strength and Corrosion Properties of Zr Alloys for Fuel Guide Tube)

  • 김현길;김일현;최병권;박상윤;박정용;정용환
    • 대한금속재료학회지
    • /
    • 제47권12호
    • /
    • pp.852-859
    • /
    • 2009
  • The manufacturing process of zirconium alloys is an import factor to increase their strength and corrosion resistance. In order to find an improved manufacturing process of zirconium alloys in both Zr-1Nb-1Sn-0.1Fe (Alloy-A) and Zr-1.5Nb-0.4Sn-0.2Fe-0.1Cr (HANA-4) for fuel guide tubes, sheet samples were prepared by applying two- and three-step processes that were controlled by an annealing and reduction condition. The mechanical strength and corrosion resistance of both alloys were increased by applying the twostep process rather than the three-step process. From a matrix analysis using TEM, the property improvement is related to the decrease of the precipitate mean diameter with an application of the two-step process. In a comparison of the strength and corrosion properties between Alloy-A and HANA-4, the performance of HANA-4 was feasible for application to fuel guide tubes.

PROPERTIES OF ZR ALLOY CLADDING AFTER SIMULATED LOCA OXIDATION AND WATER QUENCHING

  • Kim, Hyun-Gil;Kim, Il-Hyun;Jung, Yang-Il;Park, Jeong-Yong;Jeong, Yong-Hwan
    • Nuclear Engineering and Technology
    • /
    • 제42권2호
    • /
    • pp.193-202
    • /
    • 2010
  • In order to study the cladding properties of zirconium after a loss-of-coolant accident (LOCA)-simulation oxidation and water quenching test, commercial Zircaloy-4 and two kinds of HANA claddings were oxidized at temperatures ranging from $900^{\circ}C$ to $1250^{\circ}C$ and exposed for 300 s, and then cooled to $700^{\circ}C$ before quenching. Microstructural observations were made to evaluate the matrix characteristics with the chemical compositions after the LOCA-simulation test. Ring compression testing was then performed to compare the ductile behaviour of the HANA and Zircaloy-4 claddings. An X-ray diffraction (XRD) analysis was carried out for temperatures ranging from room temperature to $1250^{\circ}C$ for the oxide layer to verify the oxide crystal structure at each oxidation temperature.

냉간 압연 방향에 따른 Zr-1.1Nb-0.05Cu 합금의 크리프 거동 (Effect of Cold-Rolling Direction on Creep Behaviors in Zr-1.1Nb-0.05Cu Alloy)

  • 설용남;정양일;최병권;박정용;홍순익
    • 대한금속재료학회지
    • /
    • 제49권5호
    • /
    • pp.355-361
    • /
    • 2011
  • Creep behaviors of the Zr-1.Nb-0.5Cu (HANA-6) alloy strips with different orientations were investigated. Anisotropy was observed in the samples depending on their physical orientations due to the formation of texture in their microstructures. The creep strain rate was increased as the test stress and temperature increased. The rate was higher along the rolling-direction than in the transverse-direction irrespective of annealing conditions. However, the samples with $45^{\circ}$ direction showed different behaviors depending on the annealing temperature. When strips were finally annealed at $600^{\circ}C$ for 10 min, the primary creep rate of the $45^{\circ}$ strip was the highest among the various orientations although the saturated creep rate was the lowest. In the case of final annealing at $660^{\circ}C$ for 4 h, the highest creep rate occurred throughout the creep test in the $45^{\circ}$ strip. It is considered that the fraction of (100) planes along the direction of creep deformation affect the creep rates.