• 제목/요약/키워드: HAI controller

검색결과 113건 처리시간 0.017초

Highly power-efficient and reliable light-emitting diode backlight driver IC for the uniform current driving of medium-sized liquid crystal displays

  • Hong, Seok-In;Nam, Ki-Soo;Jung, Young-Ho;Ahn, Hyun-A;In, Hai-Jung;Kwon, Oh-Kyong
    • Journal of Information Display
    • /
    • 제13권2호
    • /
    • pp.73-82
    • /
    • 2012
  • In this paper, a light-emitting diode (LED) backlight driver integrated circuit (IC) for medium-sized liquid crystal displays (LCDs) is proposed. In the proposed IC, a linear current regulator with matched internal resistors and an adaptive phase-shifted pulse-width modulation (PWM) dimming controller are also proposed to improve LED current uniformity and reliability. The double feedback loop control boost converter is used to achieve high power efficiency, fast transient characteristic, and high dimming frequency and resolution. The proposed IC was fabricated using the 0.35 ${\mu}m$ bipolar-CMOS-DMOS (BCD) process. The LED current uniformity and LED fault immunity of the proposed IC were verified through experiments. The measured power efficiency was 90%; the measured LED current uniformity, 97%; and the measured rising and falling times of the LED current, 86 and 7 ns, respectively. Due to the fast rising and falling characteristics, the proposed IC operates up to 39 kHz PWM dimming frequency, with an 8-bit dimming resolution. It was verified that the phase difference between the PWM dimming signals is changed adaptively when LED fault occurs. The experiment results showed that the proposed IC meets the requirements for the LED backlight driver IC for medium-sized LCDs.

An Improved Active Damping Method with Capacitor Current Feedback

  • Geng, Yi-Wen;Qi, Ya-Wen;Liu, Hai-Wei;Guo, Fei;Zheng, Peng-Fei;Li, Yong-Gang;Dong, Wen-Ming
    • Journal of Power Electronics
    • /
    • 제18권2호
    • /
    • pp.511-521
    • /
    • 2018
  • Proportional capacitor current feedback active damping (CCFAD) has a limited valid damping region in the discrete time domain as (0, $f_s/6$. However, the resonance frequency ($f_r$) of an LCL-type filter is usually designed to be less than half the sampling frequency ($f_s$) with the symmetry regular sampling method. Therefore, ($f_s/6$, $f_s/2$) becomes an invalid damping region. This paper proposes an improved CCFAD method to extend the valid damping region from (0, $f_s/6$ to (0, $f_s/2$), which covers all of the possible resonance frequencies in the design procedure. The full-valid damping region is obtained and the stability margin of the system is analyzed in the discrete time domain with the Nyquist criterion. Results show that the system can operate stably with the proposed CCFAD method when the resonance frequency is in the region (0, $f_s/2$). The performances at the steady and dynamic state are enhanced by the selected feedback coefficient H and controller gain $K_p$. Finally, the feasibility and effectiveness of the proposed CCFAD method are verified by simulation and experimental results.

미세 다공성 과립을 이용한 탐스로신의 방출제어 (Controlled Release of Tamsulosin from Nanopore-Forming Granules)

  • 서성미;이현숙;이재휘;이하영;이봉;이해방;조선행
    • Journal of Pharmaceutical Investigation
    • /
    • 제36권1호
    • /
    • pp.39-44
    • /
    • 2006
  • Tamsulosin or a salt thereof such as its hydrochloride salt has been known to have an adrenaline ${\alpha}$ receptor blocking action for urethra and prostate areas. It has been widely used as a drug which lowers the prostate pressure and improves urinary disturbance accompanied by prostate-grand enlargement, thus for the treatment of prostatic hyperplasia. To avoid dose-dependent side effects of tamsulosin upon oral administration, the development of sustained-release delivery system is essentially required, that can maintain therapeutic drug levels for a longer period of time. The aim of this study was therefore to formulate sustained-release tamsulosin granules and assess their formulation variables. We designed entric coated sustained-release tamsulosin granules for this purpose. Nano-pores in the outer controlled release membrane were needed in order to obtain initial tamsulosin release even in an acidic environment such as gastric region. In our sustained release osmotic granule system, hydroxypropylmethylcellulose in a drug-containing layer was used as a rate controller. The drug-containing granules were coated with hydroxypropylmethylcellulose phthalate (HPMCP) and Eudragit, along with glycerol triacetate as an aqueous nano-pore former. The release of tamsulosin depended heavily on the type of Eudragit such as RS, RL, NE 30D, used in the formulation of controlled release layer. These results obtained clearly suggest that the sustained-release oral delivery system for tamsulosin could be designed with satisfying drug release profile approved by the Korean Food and Drug Administration.