• Title/Summary/Keyword: H2 evolution

Search Result 660, Processing Time 0.029 seconds

Synthesis of RuO2/h-Co3O4 Electrocatalysts Derived from Hollow ZIF and Their Applications for Oxygen Evolution Reaction (중공 ZIF를 이용한 RuO2/h-Co3O4 촉매의 합성 및 산소 발생 반응으로의 활용)

  • Yoonmo Koo;Youngbin Lee;Kyungmin Im;Jinsoo Kim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.180-185
    • /
    • 2023
  • To improve the efficiency of water electrolysis, it is essential to develop an oxygen evolution reaction (OER) electrocatalyst with high performance and long-term stability, accelerating the reaction rate of OER. In this study, a hollow metal-organic framework (MOF)-derived ruthenium-cobalt oxide catalyst was developed to synthesize an efficient OER electrocatalyst. As the synthesized catalyst increases the surface exposure of ruthenium, a low overpotential (386 mV) was observed at a current density of 10 mA/cm2 with a low Tafel slope. It is expected to be able to replace noble metal catalysts by showing higher mass activity and stability than commercial RuO2 catalysts.

Enhancing hydrogen evolution activity of MoS2 basal plane by substitutional doping and strain engineering

  • Kim, Byeong-Hun;Lee, Byeong-Ju
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.280-284
    • /
    • 2016
  • 본 연구에서는 Density functional theory(DFT) 계산을 이용하여, $MoS_2$의 Mo와 S를 다른 원자로 치환 했을 때 $2H-MoS_2$ monolayer의 basal plane에서 HER활성을 향상시켰다. 특히 Ge와 Rh를 치환한 경우, ${\Delta}G_H$가 각각 0.03eV, 0,07eV로 최적에 가까운 HER활성이 나타났다. 다른 원자의 치환이 Fermi level 근처의 DOS(density of states)를 높여, ${\Delta}G_H$을 0에 가깝게 낮출 수 있음을 확인하였다. 또한 치환되는 원자의 농도, 그리고 strain을 변화시켜 농도와 strain의 증가에 따른 ${\Delta}G_H$ 감소를 발견했다. 이로써 각치환되는 원자마다, 치환 농도와 strain을 함께 변화시켜 ${\Delta}G_H$을 낮출 수 있었다. ${\Delta}G_H$가 0에 가까운(${\pm}{\pm}0.2eV$ 이내) 원자종류, 치환 농도, strain의 여러 조합을 찾았다.

  • PDF

Binder-Free Synthesis of NiCo2S4 Nanowires Grown on Ni Foam as an Efficient Electrocatalyst for Oxygen Evolution Reaction

  • Patil, Komal;Babar, Pravin;Kim, Jin Hyeok
    • Korean Journal of Materials Research
    • /
    • v.30 no.5
    • /
    • pp.217-222
    • /
    • 2020
  • The design and fabrication of catalysts with low-cost and high electrocatalytic activity for the oxygen evolution reaction (OER) have remained challenging because of the sluggish kinetics of this reaction. The key to the pursuit of efficient electrocatalysts is to design them with high surface area and more active sites. In this work, we have successfully synthesized a highly stable and active NiCo2S4 nanowire array on a Ni-foam substrate (NiCo2S4 NW/NF) via a two-step hydrothermal synthesis approach. This NiCo2S4 NW/NF exhibits overpotential as low as 275 mV, delivering a current density of 20 mA cm-2 (versus reversible hydrogen electrode) with a low Tafel slope of 89 mV dec-1 and superior long-term stability for 20 h in 1 M KOH electrolyte. The outstanding performance is ascribed to the inherent activity of the binder-free deposited, vertically aligned nanowire structure, which provides a large number of electrochemically active surface sites, accelerating electron transfer, and simultaneously enhancing the diffusion of electrolyte.

Metallicity-dependent mixing length in evolution models of red supergiant stars in IC 1613

  • Chun, Sang-Hyun;Yoon, Sung-Chul;Oh, Heeyoung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.50.2-50.2
    • /
    • 2021
  • There is increasing evidence that the convective mixing length (α) in stellar evolution models depends on metallicity of stars. In order to confirm a more precise metallicity-dependent mixing length trend, we investigate the effective temperature and metallicity of 14 red supergiant stars (RSGs) in the irregular dwarf galaxy IC 1613 using the near-infrared spectra observed with the MMIRS on the MMT telescope. From the synthetic spectral fitting to the observed spectra, we find that the mean metallicity is about [Fe/H]=0.69 with a weak bimodal distribution. We also find that the effective temperature of RSGs in IC 1613 is higher by about 250 K than that of the SMC on average. We compare the RSG position with stellar evolutionary tracks on the HR diagram, finding that models with α = 2.2-2.4 H_p can best reproduce the effective temperatures of the RSGs in IC 1613. It is evident that the mixing length values for IC 1613 is lower than that of the Milky Way. This result supports our previous study on a metallicity-dependent mixing length: mixing length decreases with decreasing metallicity of host galaxies. However, this dependency becomes relatively weak for RSGs having a metallicity equal to or less than the SMC metallicity.

  • PDF

Fabrication of Ni-Mo-based Electrocatalysts by Modified Zn Phosphating for Hydrogen Evolution Reaction

  • Im, Han Seo;Park, Seon Ha;Ha, Hyo Jeong;Lee, Sumin;Heo, Sungjun;Im, Sang Won;Nam, Ki Tae;Lim, Sung Yul
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.54-62
    • /
    • 2022
  • The preparation of low-cost, simple, and scalable electrodes is crucial for the commercialization of water electrolyzers for H2 production. Herein, we demonstrate the fabrication of cathodes through Mo-modified Zn phosphating of Ni foam (NiF) for water electrolysis, which has been largely utilized in surface coating industry. In situ growth of electrocatalytically active layers in the hydrogen evolution reaction (HER) was occurred after 1 min of phosphating to form ZnNiMoPi, and subsequent thermal treatment and electrochemical activation resulted in the formation of ZnNiMoPOxHy. ZnNiMoPOxHy exhibited superior HER performance than NiF, primarily because of the increased electrochemically active surface area of ZnNiMoPOxHy compared to that of bare NiF. Although further investigations to improve the intrinsic electrochemical activity toward the HER and detailed mechanistic studies are required, these results suggest that phosphating is a promising coating method and will possibly advance the fabrication procedure of electrodes for water electrolyzers with better practical applications.

Effect of High-Temperature Sintering Condition on Microstructure Evolution of Pure-Cu Subjected to Metal Injection Molding (금속분말 사출성형된 순-구리의 미세조직에 미치는 고온 소결조건의 영향)

  • Han, D.I.;Suhartono, T.;Kim, D.J.;Lee, E.H.;Kim, J.H.;Ko, Y.G.
    • Transactions of Materials Processing
    • /
    • v.31 no.4
    • /
    • pp.240-245
    • /
    • 2022
  • In this study, to achieve good electrical conductivity of a charging terminal component in electric vehicles, we investigated the microstructure evolution of pure-Cu subjected to metal injection molding by controlling the sintering variables, such as temperature and time. Thus, three samples were sintered at temperatures ranging from 1000 ℃ to 1050 ℃ near to the melting temperature of 1085 ℃ for 1 and 10 h after thermal evaporation of binder at 730 ℃. Both procedures were made using a unified furnace under Ar+H2 gas with high purity. The structural observation displayed that the grain size as well as the compactness (a reciprocal of porosity) increased simultaneously as temperature and time increased. This gave rise to high thermal conductivity of 90% IACS together with high density, which was mainly attributed to decrease in fractions of grain boundaries and micro-pores working as effective scattering center for electron movement.

THE LORENTZ FORCE IN ATMOSPHERES OF CP STARS: θ AUR

  • VALYAVIN G.;KOCHUKHOV O.;SHULYAK D.;LEE B.-C.;GALAZUTDINOV G.;KIM K.-M.;HAN I.
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.283-287
    • /
    • 2005
  • The slow evolution of global magnetic fields and other dynamical processes in atmospheres of CP magnetic stars lead to the development of induced electric currents in all conductive atmospheric layers. The Lorentz force, which results from the interaction between a magnetic field and the induced currents, may modify the atmospheric structure and provide insight into the formation and evolution of stellar magnetic fields. This modification of the pressure-temperature structure influences the formation of absorption spectral features producing characteristic rotational variability of some spectral lines, especially the Balmer lines (Valyavin et al., 2004 and references therein). In order to study these theoretical predictions we began systematic spectroscopic survey of Balmer line variability in spectra of brightest CP magnetic stars. Here we present the first results of the program. A0p star $\Theta$ Aur revealed significant variability of the Balmer profiles during the star's rotation. Character of this variablity corresponds to that classified by Kroll (1989) as a result of an impact of significant Lorentz force. From the obtained data we estimate that amplitudes of the variation at H$\alpha$, H$\beta$, H$\gamma$ and H$\delta$ profiles reach up to $2.4\%$during full rotation cycle of the star. Using computation of our model atmospheres (Valyavin et al., 2004) we interpret these data within the framework of the simplest model of the evolution of global magnetic fields in chemically peculiar stars. Assuming that the field is represented by a dipole, we estimate the characteristic e.m.f. induced by the field decay electric current (and the Lorentz force as the result) on the order of $E {\~} 10^{-11}$ cgs units, which may indicate very fast (< < $10^{10}$ years) evolution rate of the field. This result strongly contradicts the theoretical point of view that global stellar magnetic fields of CP stars are fossil and their the characteristic decay time of about $10^{10}$ yr. Alternatively, we briefly discuss concurring effects (like the ambipolar diffusion) which may also lead to significant atmospheric currents producing the observable Lorentz force.

Hydration and mechanical properties of Blended Cement added Bypass dust (By-pass Dust를 첨가한 혼합 시멘트의 수화 및 기계적 특성)

  • 성진욱;나종윤;김창은;이승헌;이봉한;김수룡;류한웅
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.33-39
    • /
    • 1999
  • This study was conducted to confirm the effect of bypass dust on the hydration and mechanical properties of the cement pastes and mortar obtained from ordinary Portland cement (OPC), OPC-slag and OPC-fly ash system. The rate of heat evolution is accelerated with the content of By-pass Dust(BD). total heat evolution increased because alkali-chlorides activated the hydration of blended cement. Compressive strength and bound water content show maximum value at 5wt% By-pass Dust(BD) on each curing time in ordinary Portland cement and slag blended cement. Ca(OH)2 content of Ordinary Portland Cement increased as the content of BD and curing time. In blended cement, the formation of Ca(OH)2 is active at early hydration stage. By pozzolanic reaction, the content of Ca(OH)2 is decreased as curing time goes by. According to the BD content stable chlorides complex of Friedel's salt (C3A·CaCl2·10H2O) is created. Due to the hydration activation effect of chlorides and alkali we observed Type II C-S-H, which developed into densest microstructure.

  • PDF

Effect of Heat Treatment on the Microstructural Evolution of Pt-aluminide Coated Ni-based Superalloy (Pt-Aluminide로 코팅된 초내열합금의 열처리에 따른 미세조직변화)

  • Joo, D.;Park, S.H.;Jung, Y.G.;Lee, K.H.;Kim, C.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.19 no.2
    • /
    • pp.103-108
    • /
    • 2006
  • Microstructural evolution of Pt-aluminide coated Ni-based superalloy has been investigated with ductilization heat treatment. The Pt coat was prepared on the superalloy and then aluminide coating was conducted using a pack cementation process. Samples were heat-treated at $1050^{\circ}C$ for 2 hrs and the microstructure and element analysis were preformed. A various precipitated compounds were observed within the coating layer and the diffusion region in the Pt-aluminide coating and heat treatment, indicating that the bi-phase compounds of $PtAl_2$ and NiAl were performed during the Pt-aluminide coating, whereas $M_{23}C_6$, MC, $Ni_3Al$ and ${\sigma}$ phases were precipitated in the inter-diffusion region. The bi-phase compounds of $PtAl_2$ and NiAl were transformed into the single phase compound of $PtAl_2$ with the heat treatment, increasing the amount of carbide and ${\sigma}$ phase.