• Title/Summary/Keyword: H2 Plasma

Search Result 2,261, Processing Time 0.03 seconds

Effective Control of CH4/H2 Plasma Condition to Synthesize Graphene Nano-walls with Controlled Morphology and Structural Quality

  • Park, Hyun Jae;Shin, Jin-ha;Lee, Kang-il;Choi, Yong Sup;Song, Young Il;Suh, Su Jeong;Jung, Yong Ho
    • Applied Science and Convergence Technology
    • /
    • v.26 no.6
    • /
    • pp.179-183
    • /
    • 2017
  • The direct growth method is simplified manufacturing process used to avoid damages and contaminants from the graphene transfer process. In this paper, graphene nano-walls (GNWs) were direct synthesized using electron cyclotron resonance (ECR) plasma by varying the $CH_4/H_2$ gas flow rate on the copper foil at low temperature (without substrate heater). Investigations were carried out of the changes in the morphology and characteristic of GNWs due to the relative intensity of hydrocarbon radical and molecule in the ECR plasma. The results of these investigations were then discussed.

Efficiency enhancement of the organic light-emitting diodes by oxygen plasma treatment of the ITO substrate

  • Hong, J.W.;Oh, D.H.;Kim, C.H.;Kim, G.Y.;Kim, T.W.
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.193-197
    • /
    • 2012
  • Oxygen plasma has been treated on the surface of indium-tin-oxide (ITO) to improve the efficiency of the organic light-emitting diodes (OLEDs) device. The plasma treatment was expected to inject the holes effectively due to the control of an ITO work-function and the reduction of surface roughness. To optimize the treatment condition, a surface resistance and morphology of the ITO surface were investigated. The effect on the electrical properties of the OLEDs was evaluated as a function of oxygen plasma powers (0, 200, 250, 300, and 450 W). The electrical properties of the devices were measured in a device structure of ITO/TPD/Alq3/BCP/LiF/Al. It was found the plasma treatment of the ITO surface affects on the efficiency of the device. The efficiency of the device was optimized at the plasma power of 250 W and decreased at higher power than 250 W. The maximum values of luminance, luminous power efficiency, and external quantum efficiency of the plasma treated devices increase by 1.4 times, 1.4 times, and 1.2 times, respectively, compared to those of the non-treated ones.

Deposition of c-BN Films on Tungsten Carbide Insert Tool by Microwave Plasma Enhanced Chemical Vapor Deposition(MPECVD) (MPECVD법에 의한 초경인서트 공구의 c-BN 박막 증착)

  • Yoon, Su-Jong;Kim, Tae-Gyu
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.2
    • /
    • pp.43-47
    • /
    • 2008
  • Cubic boron nitride(c-BN) films were deposited on tungsten carbide insert tool by microwave plasma enhanced chemical vapor deposition(MPECVD) from a gas mixture of triethyl borate$(B(C_2H_5O)_3)$, ammonia $(NH_3)$, hydrogen$(H_2)$ and argon(Ar). The qualities of deposited thin film were investigated by x-ray diffrac-tion(XRD), field emission scanning electron microscopy(FE-SEM) and micro Raman spectroscope. The surface morphologies of the synthesised BN as well as crystallinity appear to be highly dependent on the flow rate of $B(C_2H_5O)_3$ and $(NH_3)$ gases. The deposited film had more crystallized phases with 5 scem of $B(C_2H_5O)_3$ and $(NH_3)$ gases than with 2 sccm, and the phase was identified as c-BN by micro Raman spectroscope and XRD. The adhesion strength were also increased with increasing flow rates of $B(C_2H_5O)_3$ and $(NH_3)$ gases.

The Characteristics of Coal Gasification using Microwave Plasma (마이크로웨이브 플라즈마를 이용한 석탄가스화 특성 연구)

  • Kim, Doo-Il;Lee, Jae-Goo;Kim, Yong-Ku;Yoon, Sang-Jun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.1
    • /
    • pp.93-99
    • /
    • 2012
  • The investigation of clean and environment-friendly coal utilization technology is actively progressed due to high oil price and serious climate change caused by greenhouse gas emissions. In this study, the plasma gasification was performed using a 6kW microwave plasma unit under various reaction conditions: the particle sizes of coal ($45{\mu}m-150{\mu}m$), $O_2$/fuel ratio (0 - 1.3), and steam/fuel ratio (0 - 1.5). The $H_2$ composition decreases with decreasing coal particle size. With increasing $O_2$/fuel ratio, the $H_2$ composition in the syngas decreased while the $CO_2$ composition increased. As the steam/fuel ratio increased from 0 to 1.5, the $H_2$ composition in the syngas increased while the $CO_2$ composition decreased. From the results, it was proven that the variation of syngas composition greatly affected by $O_2$/fuel ratio than steam/fuel ratio. The $H_2$ composition in the syngas, carbon conversion, and cold gas efficiency increased with increasing plasma power.

Influence of Gas Composition and Treatment Time on the Surface Properties of AISI 316L Austenitic Stainless Steels During Low-Temperature Plasma Nitrocarburizing Treatment (AISI 316L강의 저온 플라즈마침질탄화처리 시 가스조성과 처리시간이 표면특성에 미치는 영향)

  • Lee, In-Sup
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.11
    • /
    • pp.716-721
    • /
    • 2009
  • The major drive for the application of low-temperature plasma treatment in nitrocarburizing of austenitic stainless steels lies in improved surface hardness without degraded corrosion resistance. The low-temperature plasma nitrocarburizing was performed in a gas mixture of $N_{2}$, $H_{2}$, and carbon-containing gas such as $CH_{4}$ at $450^{\circ}C$. The influence of the processing time (5~30 h) and $N_{2}$ gas composition (15~35%) on the surface properties of the nitrocarburized layer was investigated. The resultant nitrocarburized layer was a dual-layer structure, which was comprised of a N-enriched layer (${\gamma}_N$) with a high nitrogen content on top of a C-enriched layer (${\gamma}_C$) with a high carbon content, leading to a significant increase in surface hardness. The surface hardness reached up to about $1050HV_{0.01}$, which is about 4 times higher than that of the untreated sample ($250HV_{0.01}$). The thickness of the hardened layer increased with increasing treatment time and $N_{2}$ gas level in the atmosphere and reached up to about $25{\mu}m$. In addition, the corrosion resistance of the treated samples without containing $Cr_{2}N$ precipitates was enhanced than that of the untreated samples due to a high concentration of N on the surface. However, longer treatment time (25% $N_{2}$, 30 h) and higher $N_{2}$ gas composition (35% $N_{2}$, 20 h) resulted in the formation of $Cr_{2}N$ precipitates in the N-enriched layer, which caused the degradation of corrosion resistance.

THE EFFECT OF THE HIGH DENSITY PLASMA ON THE DIAMOND-LIKE CARBON FILMS

  • Kim, H.;D.H. Jung;Park, B.;K. C. Yoo;Lee, J. J.;J. H. Joo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.54-54
    • /
    • 2003
  • DLC films were deposited on Si(100) substrates by inductively coupled plasma (ICP) assisted chemical vapor deposition (CVD). A mixture of acetylene (C$_2$H$_2$) and argon (Ar) gases was used as the precursor and plasma source, respectively. The structure of the films was characterized by the Raman spectroscopy. Results from the Raman spectroscopy analysis indicated that the property change of the DLC films is due to the sp$^3$ and sp$^2$ ratio in the films under various conditions such as ICP power, working pressure and RF substrate bias. The hydrogen content in the DLC films was determined by an electron recoil detector (ERB). The roughness of the films was measured by atomic force microscope (Am). A microhardness tester was used for the hardness and elastic modulus measurement. The DLC film showed a maximum hardness of 37㎬. In this work, the relationship between deposition parameters and mechanical properties were discussed.

  • PDF

A Study on the Characteristics of Hybrid-Plasma Torch for Dyeing Wastewater Treatment (염색폐수 처리를 위한 하이브리드 플라즈마 특성연구)

  • Jung, Jang-Gun;Youn, Seok-Hyun;Park, Jae-Youn;Kim, Sang-Don
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.8
    • /
    • pp.75-81
    • /
    • 2008
  • Water treatment study employing plasma is thoroughly examined in the following paper. The research using water plasma torch showed superior results in terms of economical and energy efficiency due to the substantial reduction of electric power. A comparison of streamer and arc discharge phenomena taken place in water was put under close scrutiny. Dyeing wastewater exposed to the plasma treatment was sampled and analyzed for relative dissolved ozone concentration, hydrogen peroxide, as well as the color removal efficiency. It was found that streamer discharges is more effective than arc discharge in growth of $H_2O_2$ and $O_3$ by plasma chemical constituents, though plasma torch had small oxidation reagents selectivity. Thus, streamer discharges, due to the efficient plasma-chemical reactions environment, proved to be more efficient compare to the thermal arc plasma loading.

The baking analysis for vacuum vessel and plasma facing components of the KSTAR tokamak (KSTAR 토카막 진공용기 및 플라즈마 대향 부품의 탈기체 처리를 위한 가열 해석)

  • Lee, K.H.;Im, K.H.;Cho, S.;Kim, J.B.;Woo, H.K.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.247-254
    • /
    • 2000
  • The base pressure of vacuum vessel of the KSTAR (Korea Superconducting Tokamak Advanced Research) Tokamak is to be a ultra high vacuum, $10^{-6}{\sim}10^{-7}Pa$, to produce clean plasma with low impurity containments. For this purpose, the KSTAR vacuum vessel and plasma facing components need to be baked up to at least $250^{\circ}C,\;350^{\circ}C$ respectively, within 24 hours by hot nitrogen gas from a separate baking/cooling line system to remove impurities from the plasma-material interaction surfaces before plasma operation. Here by applying the implicit numerical method to the heat balance equations of the system, overall temperature distributions of the KSTAR vacuum vessel and plasma facing components are obtained during the whole baking process. The model for 2-dimensional baking analysis are segmented into 9 imaginary sectors corresponding to each plasma facing component and has up-down symmetry. Under the resulting combined loads including dead weight, baking gas pressure, vacuum pressure and thermal loads, thermal stresses in the vacuum vessel during bakeout are calculated by using the ANSYS code. It is found that the vacuum vessel and its supports are structurally rigid based on the thermal stress analyses.

  • PDF

The Effect of Alloy Elements on the Damping Capacity and Plasma Ion Nitriding Characteristic of Fe-Cr-Mn-X Alloys. [II Plasma Ion Nitriding Characteristic] (Fe-Cr-Mn-X계 합금의 감쇠능 및 플라즈마 이온 질화특성에 미치는 합금원소의 영향 [II플라즈마 이온 질화특성])

  • Son, D.U.;Lee, H.H.;Seong, J.H.;Park, K.S.;Kim, C.K.;Kang, C.Y.
    • Journal of Power System Engineering
    • /
    • v.9 no.1
    • /
    • pp.76-81
    • /
    • 2005
  • The effect of micro-pulse plasma nitriding temperature and time on the case thickness, hardness and nitride formation in the surface of Fe-12Cr-22Mn-X alloy with 3% Co and 1% Ti alloys elements investigated. External compound layer and internal diffusion layer was constituted in plasma nitride case of Fe-12Cr-22Mn-X alloys and formed nitride phase such as ${\gamma}'-Fe4N\;and\;{\varepsilon}-Fe2-3N$. Case depth increased with increasing the plasma nitriding temperature and time. Surface hardness of nitrided Fe-12Cr-22Mn-X alloys obtained the above value of Hv 1,600 and case depth obtained the above value of $45{\mu}m$ in Fe-12Cr-22Mn-3Co alloy and $60{\mu}m$ in Fe-12Cr-22Mn-1Ti alloy. Wear-resistance increased with increasing plasma nitriding time and showing the higher value in Fe-12Cr-22Mn-1Ti alloy than Fe-12Cr-22Mn-3Co alloy.

  • PDF

Improvement of Virus Safety of a Human Intravenous Immunoglobulin by Low pH Incubation

  • Kim, In-Seop;Choi, Yong-Woon;Lee, Sung-Rae;Cho, Hang-Bok;Eo, Ho-Gueon;Han, Sang-Woo;Chang, Chong-Eun;Lee, Soung-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.619-627
    • /
    • 2001
  • n order to increase the virus safety of a human intravenous immunoglobulin (IVIg) that was manufactured by a successive process of cold ethanol fractionation, polyethylene glycol precipitation, and pasteurization ($60^{\circ}C$ heat treatment for 10h), a low pH incubation process (pH 3.9 at $25{\circ}C$ for 14 days) was employed as the final step. The efficacy and mechanism of the fraction III cold ethanol fractionation, pasteurization, and low pH treatment steps in the removal and/or inactivation of blood-borne viruses were closely examined. A variety of experimental model viruses for human pathogenic viruses, including the Bovine herpes virus (BHV), Bovine viral diarrhoea virus (BVDV), Murine encephalomyocarditis virus (EMCV), and Porcine parvovirus (PPV), were selected for this study. The mechanism of reduction for the enveloped viruses (BHV and BVDV) during fraction III fractionation was both inactivation and partitioning, however, it was partitioning in the case of the nonenveloped viruses (EMCV and PPV). The log reduction factors achieved during fraction III fractionation were ${\geqq}$6.7 for BHV, ${\geqq}4.7$ for BVDV, 4.5 for EMCV, and 4.4 for PPV. Pasteurization was found to be a robust and effective step in inactivating all the viruses tested. The log reduction factors achieved during the pasteurization process were ${\geqq}7.5$ for BHV, ${\geqq}4.8$ for BVDV, 3.0 for EMCV, and 3.3 for PPV. A low pH incubation was very effective in inactivating the enveloped viruses as well as EMCV. The log reduction factors achieved during low pH incubation were ${\geqq}7.4$ for BHV, ${\geqq}3.9$ for BVDV, 5.2 for EMCV, and 2.0 for PPV. These results indicate that the low pH treatment successfully improved the viral safety of the final products.

  • PDF