• Title/Summary/Keyword: H19 gene

Search Result 338, Processing Time 0.032 seconds

Correlation between chromosome abnormalities and genomic imprinting in developing human - 1) Frequent biallelic expression of insulin-like growth factor II (IGF2) in gynogenetic Ovarian Teratomas: Uncoupling of H19 and IGF2 imprinting

  • Choi, Bo-Hwa;Lee, In-Hwan;Chun, Hyo-Jin;Kang, Shin-Sung;Chang, Sung-Ik
    • Journal of Genetic Medicine
    • /
    • v.2 no.1
    • /
    • pp.41-47
    • /
    • 1998
  • Human uniparental gestations such as gynogenetic ovarian teratomas provide a model to evaluate the integrity of parent-specific gene expression - i.e. imprinting - in the absence of a complementary parental genetic contribution. The few imprinted genes characterized so far include the insulin-like growth factor-2 gene (IGF2) coding for a fetal growth factor and H19 gene whose normal function is unknown but it is likely to act as an mRNA. IGF2 is expressed by the paternal allele and H19 by the maternal allele. This reciprocal expression is quite interesting because both H19 and IGF2 genes are located close to each other on chromosome 11p15.5. In situ RNA hybridization analysis has shown variable expression of the H19 and IGF2 alleles according to the tissue origin in 11 teratomas. Especially, Skin, derivative of ectoderm, is expressed conspicuously. We examined imprinting of H19 and IGF2 in teratomas using PCR and RT-PCR of exonic polymorphism. H19 and IGF2 transcript could be expressed either biallelically or monoallelically in the teratomas. Biallelic expression (i.e., loss of imprinting) of IGF2 occurred in 5 out of 6 mature teratomas and 1 out of 1 immature teratoma. Biallelic expression of H19 occurred in 4 out of 10 mature teratomas and 1 out of 1 immature teratoma. Expression levels of H19 and IGF2 transcript using the semi-quantitative RT-PCR had no relation between monoallelic and biallelic expression. Moreover, IGF2 biallelic expression did not affect allele-specificity or levels of H19 expression. These results demonstrate that both genes, H19 and IGF2, can be imprinted, expressed and regulated independently and individually of each other in ovarian teratoma.

  • PDF

Single Nucleotide Polymorph isms of a 16 kb Region on Human Chromosome 11 p15.5 that Includes the H19 Gene

  • Park, Mi-Hyun;Ku, Hyeon-Jeong;Lee, Hye-Ja;Kim, Kwang-Joong;Park, Chan;Oh, Bermseok;Kimm, Ku-Chan;Lee, Jong-Young
    • Genomics & Informatics
    • /
    • v.3 no.3
    • /
    • pp.74-79
    • /
    • 2005
  • The H19 gene, located at human chromosome 11p15.5, is imprinted in most normal human tissues. However, imprinting is often lost in tumors suggesting H19 is a putative tumor suppressor. We analyzed the single nucleotide polymorphisms (SNPs) of a 16 kb region that includes the H19 gene and its imprinting control region (ICR) in the Korean population. To identify SNPs, we directly sequenced this region in 18 Korean subjects. We identified 64 SNPs, of which 7 were in the exons of H19, 2 were in the introns, 14 were in the 3' intergenic region and 41 were in the 5' intergenic region. Of the 64 SNPs, 21 had not previously been reported and thus appear to be unique to the Korean population. The identified SNPs of H19 in the Korean population may eventually be useful as genetic markers associated with various diseases. In this study, 7 of the 64 identified SNPs were at CTCF binding sites in the ICR and may affect regulation of H19 gene imprinting. Thus, several genetic variations of the H19 gene may be important markers in human diseases that involve genomic imprinting, including cancer.

DNA Methylation Change of H19 Differentially Methylated Region (DMR) in Day 35 of Cloned Pig Fetuses (돼지 체세포복제 35일령 태아에서 H19 메틸화 가변 영역의 DNA 메틸화 변화)

  • Ko, Yeoung-Gyu;Im, Gi-Sun;Hwang, Seong-Soo;Oh, Keon-Bong;Woo, Jae-Seok;Cho, Sang-Rae;Choi, Sun-Ho;Lee, Poong-Yeon;Yeon, Sung-Heum;Cho, Jae-Hyeon
    • Journal of Embryo Transfer
    • /
    • v.26 no.1
    • /
    • pp.79-84
    • /
    • 2011
  • This study was performed to identify the differentially methylated region (DMR) and to examine the mRNA expression of the imprinted H19 gene in day 35 of SCNT pig fetuses. The fetus and placenta at day 35 of gestation fetuses after natural mating (Control) or of cloned pig by somatic cell nuclear transfer (SCNT) were isolated from a uterus. To investigate the mRNA expression and methylation patterns of H19 gene, tissues from fetal liver and placenta including endometrial and extraembryonic tissues were collected. The mRNA expression was evaluated by real-time PCR and methylation pattern was analyzed by bisulfite sequencing method. Bisulfite analyses demonstrated that the differentially methylated region (DMR) was located between -1694 bp to -1338 bp upstream from translation start site of the H19 gene. H19 DMR (-1694 bp to -1338 bp) exhibits a normal mono allelic methylation pattern, and heavily methylated in sperm, but not in oocyte. In contrast to these finding, the analysis of the endometrium and/or extraembryonic tissues from SCNT embryos revealed a complex methylation pattern. The DNA methylation status of DMR Region In porcine H19 gene upstream was hypo methylated in SCNT tissues but hypermethylated in control tissues. Furthermore, the mRNA expression of H19 gene in liver, endometrium, and extraembryonic tissues was significantly higher in SCNT than those of control (p<0.05). These results suggest that the aberrant mRNA expression and the abnormal methylation pattern of imprinted H19 gene might be closely related to the inadequate fetal development of a cloned fetus, contributing to the low efficiency of genomic reprogramming.

Allelic Characterization of IGF2 and H19 Gene Polymorphisms in Molar Tissues

  • Piyamongkol, Wirawit;Suprasert, Prapaporn
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.9
    • /
    • pp.4405-4408
    • /
    • 2016
  • Background: To investigate the characteristics of allelic distribution of IGF2 and H19 gene polymorphisms in molar tissues compared to normal placentas. Materials and Methods: Forty-nine specimens of molar tissues as well as 100 control normal placental tissues, delivered on the same days, were collected. Polymerase chain reaction (PCR) with restriction fragment length polymorphism (RFLP) on 2% agarose gel electrophoresis was conducted to determine the allelic distribution. The ApaI polymorphism within exon 9 of IGF2 and the RsaI polymorphism within exon 5 of H19 were employed to identify the allelic distribution of the IGF2 and H19 genes, respectively. Then the data for these genes in the molar and normal placenta tissues were compared. Results: The allelic distribution of IGF2 genes found in molar tissue were 21 (42.9%) aa (undigested), 10 (20.4%) ab (heterozygous) and 18 (36.7%) bb (digested), while in normal placenta tissue the values were 22 (22%) aa, 51 (51%) ab, and 27 (27%) bb. The allelic distribution of H19 in molar tissues was 8 (16.2%) aa (undigested), 8 (16.3%) ab (heterozygous) and 33 (67.4%) bb (digested) and in normal placental tissue was 16 (16%) aa, 36 (36%) ab and 48 (48%) bb in normal placenta tissue. These results were significantly different with P values of 0.001 and 0.037 for the allelic distribution of IGF2 and H19, respectively. Conclusions: Molar tissues showed significant differences of allelic distribution of IGF2 and H19 from normal placenta tissues.

Transcriptional activation of human GM3 synthase (hST3Gal V) gene by valproic acid in ARPE-19 human retinal pigment epithelial cells

  • Song, Na-Ree;Kim, Seok-Jo;Kwon, Haw-Young;Son, Sung-Wook;Kim, Kyoung-Sook;Ahn, Hee-Bae;Lee, Young-Choon
    • BMB Reports
    • /
    • v.44 no.6
    • /
    • pp.405-409
    • /
    • 2011
  • The present study demonstrated that valproic acid (VPA) transcriptionally regulates human GM3 synthase (hST3Gal V), which catalyzes ganglioside GM3 biosynthesis in ARPE-19 human retinal pigment epithelial cells. For this, we characterized the promoter region of the hST3Gal V gene. Functional analysis of the 5'-flanking region of the hST3Gal V gene revealed that the -177 to -83 region functions as the VPA-inducible promoter and that the CREB/ATF binding site at -143 is crucial for VPA-induced expression of hST3Gal V in ARPE-19 cells. In addition, the transcriptional activity of hST3Gal V induced by VPA in ARPE-19 cells was inhibited by SP600125, a c-Jun N-terminal kinase (JNK) inhibitor. In summary, our results identified the core promoter region in the hST3Gal V promoter and for the first time demonstrated that ATF2 binding to the CREB/ATF binding site at -143 is essential for transcriptional activation of hST3Gal V in VPA-induced ARPE-19 cells.

Cloning and Expression of an Acidophilic $\alpha$-Amylase Gene from Bacillus circulans in Escherichia coli (Bacillus circulans의 호산성 $\alpha$-amylase 유전자의 클로닝 및 발현)

  • 이종석;김지연;김한복;이동석
    • Korean Journal of Microbiology
    • /
    • v.36 no.2
    • /
    • pp.112-118
    • /
    • 2000
  • A new gene encoding an acidophilic TEX>$\alpha$-amylase of Bacillus cil-culans KCTC3004 was cloned into Eschericlzia coli using pUC19 as a vector. The gene localized in the 5.8 kb PstI DNA fragment was expressed independently of its orientation in the cloning vector showing enzyme activity about 40 times greater than that produced by the original B, circulans The optimum pH and temperature of the cloned enzyme were pH 3.6 and 45^{\circ}C.$ respectively. The enzyme hydrolyzed starch to produce maltotriose and maltooligosaccharides. The SDS-PAGE and zymopram of the enzyme produced in E coli(p.4L850) indicated a molecular weight of 55,000.

  • PDF

Genetic Polymorphisms of the Bovine NOV Gene Are Significantly Associated with Carcass Traits in Korean Cattle

  • Kim, B.S.;Kim, S.C.;Park, C.M.;Lee, S.H.;Cho, S.H.;Kim, N.K.;Jang, G.W.;Yoon, D.H.;Yang, B.S.;Hong, S.K.;Seong, H.H.;Choi, B.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.6
    • /
    • pp.780-787
    • /
    • 2013
  • The objective of this study was to investigate single nucleotide polymorphisms (SNPs) in the bovine nephroblastoma overexpressed (NOV) gene and to evaluate whether these polymorphisms affect carcass traits in the Korean cattle population. We resequenced to detect SNPs from 24 unrelated individuals and identified 19 SNPs within the full 8.4-kb gene, including the 1.5-kb promoter region. Of these 19 SNPs, four were selected for genotyping based on linkage disequilibrium (LD). We genotyped 429 steers to assess the associations of these four SNPs with carcass traits. Statistical analysis revealed that g.7801T>C and g.8379A>C polymorphisms in the NOV gene were associated with carcass weight (p = 0.012 and 0.008, respectively), and the g.2005A>G polymorphism was associated with the back fat thickness (BF) trait (p = 0.0001). One haplotype of the four SNPs (GGTA) was significantly associated with BF (p = 0.0005). Our findings suggest that polymorphisms in the NOV gene may be among the important genetic factors affecting carcass yield in beef cattle.

Methylation Status of H19 Gene in Embryos Produced by Nuclear Transfer of Spermatogonial Stem Cells in Pig

  • Lee, Hyun-Seung;Lee, Sung-Ho;Gupta, Mukesh Kumar;Uhm, Sang-Jun;Lee, Hoon-Taek
    • Reproductive and Developmental Biology
    • /
    • v.35 no.1
    • /
    • pp.67-75
    • /
    • 2011
  • The faulty regulation of imprinting gene lead to the abnormal development of reconstructed embryo after nuclear transfer. However, the correlation between the imprinting status of donor cell and preimplantation stage of embryo development is not yet clear. In this study, to determine this correlation, we used the porcine spermatogonial stem cell (pSSC) and fetal fibroblast (pFF) as donor cells. As the results, the isolated cells with laminin matrix selection strongly expressed the GFR ${\alpha}$-1 and PLZF genes of SSCs specific markers. The pSSCs were maintained to 12 passages and positive for the pluripotent marker including OCT4, SSEA1 and NANOG. The methylation analysis of H19 DMR of pSSCs revealed that the zinc finger protein binding sites CTCF3 of H19 DMRs displayed an androgenic imprinting pattern (92.7%). Also, to investigate the reprogramming potential of pSSCs as donor cell, we compared the development rate and methylation status of H19 gene between the reconstructed embryos from pFF and pSSC. This result showed no significant differences of the development rate between the pFFs ($11.2{\pm}0.8%$) and SSCs ($13.3{\pm}1.1%$). However, interestingly, while the CTCF3 methylation status of pFF-NT blastocyst was decreased (36.3%), and the CTCF3 methylation status of pSSC-NT blastocyst was maintained. Therefore, this result suggested that the genomic imprinting status of pSSCs is more effective than that of normal somatic cells for the normal development because the maintenance of imprinting pattern is very important in early embryo stage.

H19 Gene Is Epigenetically Stable in Mouse Multipotent Germline Stem Cells

  • Oh, Shin Hye;Jung, Yoon Hee;Gupta, Mukesh Kumar;Uhm, Sang Jun;Lee, Hoon Taek
    • Molecules and Cells
    • /
    • v.27 no.6
    • /
    • pp.635-640
    • /
    • 2009
  • Testis-derived germline stem (GS) cells can undergo reprogramming to acquire multipotency when cultured under appropriate culture conditions. These multipotent GS (mGS) cells have been known to differ from GS cells in their DNA methylation pattern. In this study, we examined the DNA methylation status of the H19 imprinting control region (ICR) in multipotent adult germline stem (maGS) cells to elucidate how epigenetic imprints are altered by culture conditions. DNA methylation was analyzed by bisulfite sequencing PCR of established maGS cells cultured in the presence of glial cell line-derived neurotrophic factor (GDNF) alone or both GDNF and leukemia inhibitory factor (LIF). The results showed that the H19 ICR in maGS cells of both groups was hypermethylated and had an androgenetic pattern similar to that of GS cells. In line with these data, the relative abundance of the Igf2 mRNA transcript was two-fold higher and that of H19 was three fold lower than in control embryonic stem cells. The androgenetic DNA methylation pattern of the H19 ICR was maintained even after 54 passages. Furthermore, differentiating maGS cells from retinoic acid-treated embryoid bodies maintained the androgenetic imprinting pattern of the H19 ICR. Taken together these data suggest that our maGS cells are epigenetically stable for the H19 gene during in vitro modifications. Further studies on the epigenetic regulation and chromatin structure of maGS cells are therefore necessary before their full potential can be utilized in regenerative medicine.

Methylation of P16 and hMLH1 in Gastric Carcinoma (위암에서 P16 및 hMLH1 유전자의 메틸화)

  • Sung, Gi-Young;Chun, Kyung-Hwa;Song, Gyo-Yeong;Kim, Jin-Jo;Chin, Hyung-Min;Kim, Wook;Park, Cho-Hyun;Park, Seung-Man;Lim, Keun-Woo;Park, Woo-Bae;Kim, Seung-Nam;Jeon, Hae-Myung
    • Journal of Gastric Cancer
    • /
    • v.5 no.4 s.20
    • /
    • pp.228-237
    • /
    • 2005
  • Purpose: We investigated the impacts of the methylation states of the P16 and the hMLH1 genes on pathogenesis and genetic expression of stomach cancer and their relationships with Helicobater pylori infection, and with other clinico-pathologic factors. Material and Methods: In our study, to detect protein expression and methylation status of the P16 and the hMLH1 genes in 100 advanced gastric adenocarcinomas, used immunohistochemical staining and methylation-specific PCR (MSP) and direct automatic genetic sequencing analysis. Results: Methylation of the P16 gene was observed in 19 out of 100 cases (19%) and in the 18 of those cases (94.7%) loss of protein expression was seen. We were sble to show that loss of P16 gene expression was related to methylation of the P16 gene (kappa coefficient=0.317, p=0.0011). Methylation of the hMLH1 gene was observed in 27 cases (27%), and in 24 cases of those 27 cases (88.8%), loss of protein expression was seen, which suggested that loss of protein expression in the hMLH1 gene is related to methylation of hMLH1 gene (kappa coefficient=0.675, P<0.0001). Also methylation of the hMLH1 gene was related to age, size of the mass, and lauren's classification. Conclusion: We found that methylation of DNA plays an important role in inactivation of the P16 and the hMLH1 genes. The methylation of the hMLH1 genes is significantly related to age, size of the mass, and lauren's classification.

  • PDF