• Title/Summary/Keyword: H17/28

Search Result 873, Processing Time 0.02 seconds

Comparison of Blood and Urine Renal Indices Between Hypercalciuric and Non-hypercalciuric Hematuria Patients (혈뇨 환아에서 고칼슘뇨군과 비고칼슘뇨군의 혈액 및 소변화학검사와 신기능 지표들의 비교)

  • Lee, Jin-Hee;Lee, Hyun-Seung;Lee, Keun-Young;Jang, Pil-Sang;Lee, Kyung-Yil;Kim, Dong-Un
    • Childhood Kidney Diseases
    • /
    • v.11 no.2
    • /
    • pp.168-177
    • /
    • 2007
  • Purpose : The purpose of this study was to investigate whether hypercalciuria patients with hematuria show different renal indices compared to non-hypercalciuria patients with hematuria. Methods : We retrospectively reviewed the medical records of patients with gross or microscopic hematuria whose blood chemistry and 24 hour urine chemistry were examined. After excluding the patients with more than $4 mg/m^2/day$ proteinuria or the patients with urinary calcium excretion between 3 and 4 mg/kg/day, we divided the patients into two groups: a hypercalciuria group whose calcium excretion was more than 4 mg/kg/day(n=30) and a non hypercalciuria group whose calcium excretion was less than 3 mg/kg/day(n=41). The urinary excretion, clearance, and fractional excretion(FE) of Na, K, Cl, Ca, P, urea, and creatinine were calculated and compared between the two groups. Results : The hypercalciuria group had more calcium excretion($6.1{\pm}2.9$ vs $1.5{\pm}0.9 mg/kg/day$), more urea excretion($341{\pm}102$ vs $233{\pm}123 mg/kg/day$), greater glomerular filtration rate(GFR) ($93.7{\pm}31.1$ vs $79.5{\pm}32.0 mL/min$) but lower FENa($1.0{\pm}0.4%$ vs $1.3{\pm}0.6%$) than the nonhyper-calciuria group, although the urinary sodium excretion was similar between the two groups. Conclusion : The greater urea excretion and GFR in hypercalciuric patients suggest that they might be on a higher protein diet than the non-hypercalciuria group. The increased glomerular filtration of sodium and calcium induced by the higher GFR in hypercalciuria would have increased their delivery to the distal tubule, where sodium is effectively reabsorbed but calcium is not, which is suggested by the lower FENa but higher FECa in hyercalciuria. It is recommended that the diet of hematuria patients be reviewed in detail at initial presentation and during treatment.

  • PDF

Pharmacokinetic Study of Isoniazid and Rifampicin in Healthy Korean Volunteers (정상 한국인에서의 Isoniazid와 Rifampicin 약동학 연구)

  • Chung, Man-Pyo;Kim, Ho-Cheol;Suh, Gee-Young;Park, Jeong-Woong;Kim, Ho-Joong;Kwon, O-Jung;Rhee, Chong-H.;Han, Yong-Chol;Park, Hyo-Jung;Kim, Myoung-Min;Choi, Kyung-Eob
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.3
    • /
    • pp.479-492
    • /
    • 1997
  • Background : Isoniazid(INH) and rifampicin(RFP) are potent antituberculous drugs which have made tuberculous disease become decreasing. In Korea, prescribed doses of INH and RFP have been different from those recommended by American Thoracic Society. In fact they were determined by clinical experience rather than by scientific basis. Even there has been. few reports about pharmacokintic parameters of INH and RFP in healthy Koreans. Method : Oral pharmacokinetics of INH were studied in 22 healthy native Koreans after administration of 300 mg and 400mg of INH to each same person successively at least 2 weeks apart. After an overnight fast, subjects received medication and blood samples were drawn at scheduled times over a 24-hour period. Urine collection was also done for 24 hours. Pharmacokinetics of RFP were studied in 20 subjects in a same fashion with 450mg and 600mg of RFP. Plasma and urinary concentrations of INH and RFP were determined by high-performance liquid chromatography(HPLC). Results : Time to reach peak serum concentration (Tmax) of INH was $1.05{\pm}0.34\;hrs$ at 300mg dose and $0.98{\pm}0.59\;hrs$ at 400mg dose. Half-life was $2.49{\pm}0.88\;hrs$ and $2.80{\pm}0.75\;hrs$, respectively. They were not different significantly(p > 0.05). Peak serum concentration(Cmax) after administration of 400mg of INH was $7.14{\pm}1.95mcg/mL$ which was significantly higher than Cmax ($4.37{\pm}1.28mcg/mL$) by 300mg of INH(p < 0.01). Total clearance(CLtot) of INH at 300mg dose was $26.76{\pm}11.80mL/hr$. At 400mg dose it was $21.09{\pm}8.31mL/hr$ which was significantly lower(p < 0.01) than by 300mg dose. While renal clearance(CLr) was not different among two groups, nonrenal clearance(CLnr) at 400mg dose ($18.18{\pm}8.36mL/hr$) was significantly lower than CLnr ($23.71{\pm}11.52mL/hr$) by 300mg dose(p < 0.01). Tmax of RFP was $1.11{\pm}0.41\;hrs$ at 450mg dose and $1.15{\pm}0.43\;hrs$ at 600mg dose. Half-life was $4.20{\pm}0.73\;hrs$ and $4.95{\pm}2.25\;hrs$, respectively. They were not different significantly(p > 0.05). Cmax after administration of 600mg of RFP was $13.61{\pm}3.43mcg/mL$ which was significantly higher than Cmax($10.12{\pm}2.25mcg/mL$) by 450mg of RFP(p < 0.01). CLtot of RFP at 450mg dose was $7.60{\pm}1.34mL/hr$. At 600mg dose it was $7.05{\pm}1.20mL/hr$ which was significantly lower(p < 0.05) than by 450mg dose. While CLr was not different among two groups, CLnr at 600 mg dose($5.36{\pm}1.20mL/hr$) was significantly lower than CLnr($6.19{\pm}1.56mL/hr$) by 450mg dose(p < 0.01). Conclusion : Considering Cmax and CLnr, 300mg, of INH and 450mg RFP might be sufficient doses for the treatment of tuberculosis in Koreans. But it remains to be clarified in the patients with tuberculosis.

  • PDF

Studies on the Mechanical Properties of Weathered Granitic Soil -On the Elements of Shear Strength and Hardness- (화강암질풍화토(花崗岩質風化土)의 역학적(力學的) 성질(性質)에 관(關)한 연구(硏究) -전단강도(剪斷强度)의 영향요소(影響要素)와 견밀도(堅密度)에 대(對)하여-)

  • Cho, Hi Doo
    • Journal of Korean Society of Forest Science
    • /
    • v.66 no.1
    • /
    • pp.16-36
    • /
    • 1984
  • It is very important in forestry to study the shear strength of weathered granitic soil, because the soil covers 66% of our country, and because the majority of land slides have been occured in the soil. In general, the causes of land slide can be classified both the external and internal factors. The external factors are known as vegetations, geography and climate, but internal factors are known as engineering properties originated from parent rocks and weathering. Soil engineering properties are controlled by the skeleton structure, texture, consistency, cohesion, permeability, water content, mineral components, porosity and density etc. of soils. And the effects of these internal factors on sliding down summarize as resistance, shear strength, against silding of soil mass. Shear strength basically depends upon effective stress, kinds of soils, density (void ratio), water content, the structure and arrangement of soil particles, among the properties. But these elements of shear strength work not all alone, but together. The purpose of this thesis is to clarify the characteristics of shear strength and the related elements, such as water content ($w_o$), void ratio($e_o$), dry density (${\gamma}_d$) and specific gravity ($G_s$), and the interrelationship among related elements in order to decide the dominant element chiefly influencing on shear strength in natural/undisturbed state of weathered granitic soil, in addition to the characteristics of soil hardness of weathered granitic soil and root distribution of Pinus rigida Mill and Pinus rigida ${\times}$ taeda planted in erosion-controlled lands. For the characteristics of shear strength of weathered granitic soil and the related elements of shear strength, three sites were selected from Kwangju district. The outlines of sampling sites in the district were: average specific gravity, 2.63 ~ 2.79; average natural water content, 24.3 ~ 28.3%; average dry density, $1.31{\sim}1.43g/cm^3$, average void ratio, 0.93 ~ 1.001 ; cohesion, $ 0.2{\sim}0.75kg/cm^2$ ; angle of internal friction, $29^{\circ}{\sim}45^{\circ}$ ; soil texture, SL. The shear strength of the soil in different sites was measured by a direct shear apparatus (type B; shear box size, $62.5{\times}20mm$; ${\sigma}$, $1.434kg/cm^2$; speed, 1/100mm/min.). For the related element analyses, water content was moderated through a series of drainage experiments with 4 levels of drainage period, specific gravity was measured by KS F 308, analysis of particle size distribution, by KS F 2302 and soil samples were dried at $110{\pm}5^{\circ}C$ for more than 12 hours in dry oven. Soil hardness represents physical properties, such as particle size distribution, porosity, bulk density and water content of soil, and test of the hardness by soil hardness tester is the simplest approach and totally indicative method to grasp the mechanical properties of soil. It is important to understand the mechanical properties of soil as well as the chemical in order to realize the fundamental phenomena in the growth and the distribution of tree roots. The writer intended to study the correlation between the soil hardness and the distribution of tree roots of Pinus rigida Mill. planted in 1966 and Pinus rigida ${\times}$ taeda in 199 to 1960 in the denuded forest lands with and after several erosion control works. The soil texture of the sites investigated was SL originated from weathered granitic soil. The former is situated at Py$\ddot{o}$ngchangri, Ky$\ddot{o}$m-my$\ddot{o}$n, Kogs$\ddot{o}$ng-gun, Ch$\ddot{o}$llanam-do (3.63 ha; slope, $17^{\circ}{\sim}41^{\circ}$ soil depth, thin or medium; humidity, dry or optimum; height, 5.66/3.73 ~ 7.63 m; D.B.H., 9.7/8.00 ~ 12.00 cm) and the Latter at changun-long Kwangju-shi (3.50 ha; slope, $12^{\circ}{\sim}23^{\circ}$; soil depth, thin; humidity, dry; height, 10.47/7.3 ~ 12.79 m; D.B.H., 16.94/14.3 ~ 19.4 cm).The sampling areas were 24quadrats ($10m{\times}10m$) in the former area and 12 in the latter expanding from summit to foot. Each sampling trees for hardness test and investigation of root distribution were selected by purposive selection and soil profiles of these trees were made at the downward distance of 50 cm from the trees, at each quadrat. Soil layers of the profile were separated by the distance of 10 cm from the surface (layer I, II, ... ...). Soil hardness was measured with Yamanaka soil hardness tester and indicated as indicated soil hardness at the different soil layers. The distribution of tree root number per unit area in different soil depth was investigated, and the relationship between the soil hardness and the number of tree roots was discussed. The results obtained from the experiments are summarized as follows. 1. Analyses of simple relationship between shear strength and elements of shear strength, water content ($w_o$), void ratio ($e_o$), dry density (${\gamma}_d$) and specific gravity ($G_s$). 1) Negative correlation coefficients were recognized between shear strength and water content. and shear strength and void ratio. 2) Positive correlation coefficients were recognized between shear strength and dry density. 3) The correlation coefficients between shear strength and specific gravity were not significant. 2. Analyses of partial and multiple correlation coefficients between shear strength and the related elements: 1) From the analyses of the partial correlation coefficients among water content ($x_1$), void ratio ($x_2$), and dry density ($x_3$), the direct effect of the water content on shear strength was the highest, and effect on shear strength was in order of void ratio and dry density. Similar trend was recognized from the results of multiple correlation coefficient analyses. 2) Multiple linear regression equations derived from two independent variables, water content ($x_1$ and dry density ($x_2$) were found to be ineffective in estimating shear strength ($\hat{Y}$). However, the simple linear regression equations with an independent variable, water content (x) were highly efficient to estimate shear strength ($\hat{Y}$) with relatively high fitness. 3. A relationship between soil hardness and the distribution of root number: 1) The soil hardness increased proportionally to the soil depth. Negative correlation coefficients were recognized between indicated soil hardness and the number of tree roots in both plantations. 2) The majority of tree roots of Pinus rigida Mill and Pinus rigida ${\times}$ taeda planted in erosion-controlled lands distributed at 20 cm deep from the surface. 3) Simple linear regression equations were derived from indicated hardness (x) and the number of tree roots (Y) to estimate root numbers in both plantations.

  • PDF