• Title/Summary/Keyword: H1-2 toxin

Search Result 115, Processing Time 0.028 seconds

Acid Resistance of Non-O157 Shiga Toxin-Producing Escherichia coli Adapted in Fruit Juices in Simulated Gastric Fluid (위합성용액에서 과일주스에 노출한 Non-O157 Shiga Toxin-Producing Escherichia coli의 산 저항성 평가)

  • Kim, Gwang-Hee;Oh, Deog-Hwan
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.4
    • /
    • pp.577-584
    • /
    • 2016
  • The objectives of this study were I) to compare the acid resistance (AR) of seven non-O157 Shiga toxin-producing Escherichia coli (STEC) serogroups, including O26, O45, O103, O111, O121, O145, and O157:H7 STEC isolated from various sources, in 400 mM acetic acid solution (AAS) at pH 3.2 and $30^{\circ}C$ for 25 min with or without glutamic acid and II) to determine strain survival upon exposure to simulated gastric fluid (SGF, pH 1.5) at $37^{\circ}C$ for 2 h after acid adaptation in apple, pineapple, orange, and strawberry juices at pH 3.8, $4^{\circ}C$ and $20^{\circ}C$. Results show that the O111 serogroup strains had the strongest AR (0.12 log reduction CFU/mL) which was very similar to that of O157:H7 STEC (P>0.05), compared to other serogroups in AAS without glutamic acid, whereas O26 serogroup strains showed the most sensitive AR. However, there was no significant (P>0.05) difference of AR among seven serogroups in AAS with glutamic acid. In the SGF study, 05-6545 (O45:H2), 08023 (O121:H19), and 03-4669 (O145:NM) strains adapted in fruit juices at $4^{\circ}C$ and $20^{\circ}C$ displayed enhanced survival with exposure to SGF for 60 min compared to 06E0218 (O157:H7) strains (P<0.05). In addition, 4 STEC strains adapted in pineapple juice at $4^{\circ}C$ showed enhanced survival with exposure to SGF for 60 min compared to those strains acid-adapted in the other fruit juices. Generally, adaptation at $4^{\circ}C$ in fruit juices resulted in significantly enhanced survival levels compared to acid-adapted at $20^{\circ}C$ and non-adapted conditions. The AR caused by adaptation in fruit juices at low temperature may thus increase survival of non-O157 STEC strain in acidic environments such as the gastrointestinal tract. These results suggest that more careful strategies should be provided to protect against risk of foodborne illness by non-O157 STEC.

Inhibitory Effect of Medicinal Plant Extract on Cell Toxicity and Interleukin-8 Production Induced by Helicobacter pylori (Helicobacter pylori에 의한 세포독성 및 Interleukin-8 생성에 미치는 생약혼합물의 영향)

  • Kwon, Dong-Yeul;Gan, Cai;Shon, Yun-Hee;Nam, Kyung-Soo
    • Korean Journal of Pharmacognosy
    • /
    • v.33 no.2 s.129
    • /
    • pp.124-129
    • /
    • 2002
  • The effects of Helicobacter pylori and medicinal plants extract (Leweifang) on the viability and interleukin(IL)-8 production of gastric epithelial cell were investigated. Cells viability was significantly decreased when they incubated with H. pylori or H. pylori toxin. Co-incubation with Leweifang increased H. pylori or H. pylori toxin-inhibited cell growth in a concentration-dependent manner. The production of IL-8 was greatly increased in H. pylori-infected KATO III gastric epithelial cells in a concentration- and time-dependent manner. The increased production of IL-8 was significantly inhibited by Leweifang $(1,000{\sim}5,000{\mu}g/ml)$. These results indicate that Leweifang has protective effect on H. pylori-inhibited cell growth and H. pylori-induced gastric mucosal cell inflammation by suppressing the production of inflammatory cytokine (IL-8) from gastric epithelial cells.

Isolation and characterization of bacteriophages for the control of Shiga Toxin-producing E. coli (시가 독소 생성 대장균의 제어를 위한 박테리오파지의 분리와 특성 분석)

  • Lim, Ga-Yeon;Park, Do Won;Lee, Young-Duck;Park, Jong-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.6
    • /
    • pp.594-600
    • /
    • 2018
  • Shiga toxin-producing Escherichia coli (STEC) is an important pathogenic bacterium. To control STEC, the characteristics of the ECP33 and NOECP91 coliphages, which belong to the Myoviridae family, were analyzed. The host inhibition range for a total of 44 STEC strains was 45.5% for ECP33 and 65.9% for NOECP91. ECP33 and NOECP91 were relatively stable at $65^{\circ}C$, 50 ppm of sodium hyperchlorite, and a pH value of 4-10. However, the two phages were susceptible to a temperature of $70^{\circ}C$. NOECP91 was killed within 1 h after exposure to 30% ethanol, but ECP33 showed high tolerance even after exposure to 70% ethanol for 1 h. Interestingly, the inhibition of STEC growth according to the multiplicity of infection of 0.1 was confirmed until no growth was observed after 10 hours of culture with the phages. Therefore, the ECP33 and NOECP91 phages may be applied as a biological control agent for Shiga toxin-producing E. coli.

Identification and characterization of Shiga toxin-producing Escherichia coli isolated from diarrhea in calves (송아지 설사분변으로부터 Shiga toxin-producing Escherichia coli 의 분리 및 특성규명)

  • Lim, Keum-Gi;Kang, Mun-Il;Kim, Snag-Ki;Nam, Kyung-Woo;Park, Hyun-Joo;Park, Jin- Ryang;Cho, Kyoung-Oh;Lee, Bong-Joo
    • Korean Journal of Veterinary Research
    • /
    • v.46 no.2
    • /
    • pp.135-142
    • /
    • 2006
  • Shiga toxin (stx) producing Escherichia coli (STEC) causes various clinical signs in animal and human. In this study, 255 fecal samples from calves showing diarrhea were collected from cattle farms in Chonnam province during the period from January 2005 to July 2005. Twenty six STEC (10%) were isolated from 255 fecal samples by PCR. The isolates displayed three different stx combinations (stx1 [69%], stx1 and stx2 [15%], and stx2 [38%]). The isolates were further studied for virulence associated genes and antimicrobial resistance to define the virulence properties. Intimin (eaeA), enterohemolysin (hlyA), and lipopolysaccharide (rfbE) virulence genes were detected in 6 (23%), 7 (26%), and 1 (3.8%) of the isolates, respectively, by PCR. One isolate possessing rfbE gene was typed as E. coli 0157 : H7 by agglutination test with O and H antisera. All 26 isolates showed susceptibility to amikacin (100%) and the majority of isolates showed high susceptibility to gentamicin (88.5%) and chloramphenicol (73.1%). But all isolates were resistant to penicillin. These results may provide the basic knowledge to establish strategies for the treatment and prevention of enteric disease in calves.

[${\alpha}-Adrenergic$ and Cholinergic Receptor Agonists Modulate Voltage-Gated $Ca^{2+}$ Channels

  • Nah, Seung-Yeol;Kim, Jae-Ha;Kim, Cheon-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.5
    • /
    • pp.485-493
    • /
    • 1997
  • We investigated the effect of ${\alpha}-adrenergic$ and cholinergic receptor agonists on $Ca^{2+}$ current in adult rat trigeminal ganglion neurons using whole-cell patch clamp methods. The application of acetylcholine, carbachol, and oxotremorine ($50\;{\mu}M\;each$) produced a rapid and reversible reduction of the $Ca^{2+}$ current by $17{\pm}6%,\;19{\pm}3%,\;and\;18{\pm}4%$, respectively. Atropine, a muscarinic antagonist, blocked carbachol- induced $Ca^{2+}$ current inhibition to $3{\pm}1%$. Norepinephrine ($50\;{\mu}M$) reduced $Ca^{2+}$ current by $18{\pm}2%$, while clonidine ($50\;{\mu}M$), an ${\alpha}2-adrenergic$ receptor agonist, inhibited $Ca^{2+}$ current by only $4{\pm}1%$. Yohimbine, an ${\alpha}2-adrenergic$ receptor antagonist, did not block the inhibitory effect of norepinephrine on $Ca^{2+}$ current, whereas prazosin, an ${\alpha}1-adrenergic$ receptor antagonist, attenuated the inhibitory effect of norepinephrine on $Ca^{2+}$ current to $6{\pm}1%$. This pharmacology contrasts with ${\alpha}2-adrenergic$ receptor modulation of $Ca^{2+}$ channels in rat sympathetic neurons, which is sensitive to clonidine and blocked by yohimbine. Our data suggest that the modulation of voltage dependent $Ca^{2+}$ channel by norepinephrine is mediated via an α1-adrenergic receptor. Pretreatment with pertussis toxin (250 ng/ml) for 16 h greatly reduced norepinephrine- and carbachol-induced $Ca^{2+}$ current inhibition from $17{\pm}3%\;and\;18{\pm}3%\;to\;2{\pm}1%\;and\;2{\pm}1%$, respectively. These results demonstrate that norepinephrine, through an ${\alpha}1-adrenergic$ receptor, and carbachol, through a muscarinic receptor, inhibit $Ca^{2+}$ currents in adult rat trigeminal ganglion neurons via pertussis toxin sensitive GTP-binding proteins.

  • PDF

Bradykinin-Mediated Stimulation of Phospholipase D in Rabbit Kidney Proximal Tubule Cells

  • Park, Kyung-Hyup;Jung, Jee-Chang;Chung, Sung-Hyun
    • Biomolecules & Therapeutics
    • /
    • v.2 no.1
    • /
    • pp.39-46
    • /
    • 1994
  • The present study was undertaken to demonstrate whether or not bradykinin activates a phospholipase D in rabbit kidney proximal tubule cells. By measuring the formation of [$^3$H]phosphatidic acid and [$^3$H]phosphatidylethanol we could elucidate the direct stimulation of phospholipase D by bradykinin. Bradykinin leads to a rapid increase in [$^3$H]phosphatidic acid and [$^3$H]diacylglycerol, and [$^3$H]phosphatidic acid formation preceded the formation of [$^3$H]diacylglycerol. This result suggests that some phosphatidic acid seems to be formed directly from phosphatidylcholine by the action of phospholipase D, not from diacylglycerol by the action of diacylglycerol kinase. In addition, the other mechanisms by which phospholipase D is activated was examined. We have found that phospholipase D was activated and regulated by extracellular calcium ion and pertussis toxin-insensitive G protein, respectively. It has also been shown that bradykinin may activate phospholipase D through protein kinase C-dependent pathway. In conclusion, we are now, for the first time, strongly suggesting that bradykinin-induced activation of phospholipase D in the rabbit kidney proximal tubule cells is mediated by a pertussis toxin-insensitive G protein and is dependent of protein kinase C.

  • PDF

A Study on the Degradation of Cyanobacterial Toxin, Microcystin LR Using Chemical Oxidants (화학적 산화제를 이용한 남조류 독소, 마이크로시스틴 LR의 분해연구)

  • Pyo, Dong-Jin;Kim, Eun-Jung
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.5
    • /
    • pp.467-472
    • /
    • 2004
  • Cyanobacterial toxins, microcystins which exist in korean lakes show strong toxicity to fish, cattles and human. In this study, we tried to degrade microcystin LR using various chemical oxidants, Chlorine, Potassium permanganate and Hydrogen Peroxide. The detection method for the concentrations of microcystin LR in water samples was Enzyme-Linked Immunosorbent Assay (ELISA) method using the monoclonal antibody of microcystin. Chlorine degraded microcystin LR effectively at the concentration of 800 pg/mL microcystin LR and 12 ppm chlorine. The reaction took 40 minutes at pH 7. Potassium Permanganate also degraded microcystin LR successfully at the concentration of 2000 pg/mL microcystin LR and 1.2 ppm chlorine. The degradation reaction took 60 minutes at pH 7. In the case of hydrogen peroxide, the degradation rate of microcystin LR was very slow because of the slow reaction rate.

Detoxification and Paralytic Shellfish Poison Profile with Heating, Storage and Treatment of Alkaline in Blue Mussel, Mytilus edulis (알칼리 처리 및 가열, 저장에 따른 진주담치의 마비성 패류독 성분 특성 및 제독)

  • Jang, Jun-Ho;Yun, So-Mi;Lee, Jong-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.2
    • /
    • pp.212-218
    • /
    • 2006
  • Changes of paralytic shellfish poison (PSP) contents, toxicity and toxin composition with pH and storing periods at different temperature in toxic blue mussel, Mytilus edulis, were tested by using fluorometric HPLC method. Toxicity at pH 3 was the highest as 14.1 MU/g $(100\%)$ and showed 12.9 MU/g $(92.1\%)$ at pH 5, 9.0 MU/g $(63.8\%)$ at pH 7, 3.6 MU/g $(25.5\%)$ at pH 9 and 0.8 MU/g $(5.7\%)$ at pH 10 which suggested PSP was unstable at alkaline conditions. The decrease in toxicity during storage days was depend on pH and temperature. The toxicity markedly decreased until during the first S day storage $(19.9\~65.3\%)$ at all pH (3, 5, 7, 9) and temperature (30, 5, $-20^{\circ}C$), but, slightly decreased after then till to 30 days. C group toxin (C1 and C2) was the major components and other toxins such as GTX 1,2,3,4, STX and dcSTX were detected. Among the 8 toxins, GTX1,4, dcSTX and STX were firstly decreased according to the decreasing the toxicity at all processing conditions. The toxicity in blue mussel (14.1 MU/g) were able to remove by heating over 10 minutes at pH higher than 7.

pH-dependence in the inhibitory effects of Zn2+ and Ni2+ on tolaasin-induced hemolytic activity (Zn2+와 Ni2+에 의한 톨라신 용혈활성 저해효과의 pH 의존성)

  • Yun, Yeong-Bae;Choi, Tae-Keun;Kim, Young-Kee
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.3
    • /
    • pp.213-217
    • /
    • 2018
  • Tolaasin secreted by Pseudomonas tolaasii is a peptide toxin and causes brown blotch disease on the cultivated mushrooms by collapsing cellular and fruiting body structure. Toxicity of tolaasin was evaluated by measuring hemolytic activity because tolaasin molecules form membrane pores on the red blood cells and destroy cell membrane structure. In the previous studies, we found that tolaasin cytotoxicity was suppressed by $Zn^{2+}$ and $Ni^{2+}$. $Ni^{2+}$ inhibited the tolaasin-induced hemolysis in a dose-dependent manner and its $K_i$ value was 1.8 mM. The hemolytic activity was completely inhibited at the concentration higher than 10 mM. The inhibitory effect of $Zn^{2+}$ on tolaasin-induced hemolysis was increased in alkaline pH, while that of $Ni^{2+}$was not much dependent on pH. When the pH of buffer solution was increased from pH 7 to pH 9, the time for 50% hemolysis ($T_{50}$) was increased greatly by $100{\mu}M$ $Zn^{2+}$; however, it was slightly increased by 1 mM $Ni^{2+}$ at all pH values. When the synergistic effect of $Zn^{2+}$ and $Ni^{2+}$ on tolaasin-induced hemolysis was measured, it was not dependent on the pH of buffer solution. Molecular elucidation of the difference in pH-dependence of these two metal ions may contribute to understand the mechanism of tolaasin pore formation and cytotoxicity.

Mosquitocidal Proteins from Escheriachia coli pSL 2-1 Clone and Bacillus sphaericus 1593 (Escheriachia coli pSL 2-1 클론과 Bacillus sphaericus 1593 균주가 생산한 모기치사 단백질)

  • Lee, Hong-Sup;Kim, Soo-Young;Lee, Hyung-Hoan
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.5
    • /
    • pp.389-392
    • /
    • 1988
  • A clone pSL 2-1, which is a recombinant plasmid believed to contain the mosquitocidal crystal-line protein gene of the Bacillus sphaericus 1593, was expressed in Escherichia coli JM83 and the product of the clone was purified and identified. The unsolubilized mosquitocidal crystal proteins from the B. sphaericus had formed 43, 58, 64, 100, 113, and 130 Kd bands in the SDS-polyacrylamide gel, but the NaOH-solublized proteins at pH 12 formed 2 protein bands of 43- and 64Kd in the gel because the larger protein (precursor) bands were cleaved. The products of the pSL 2-1 clone was purified by Sephadex G-200 and only the fractions having lethal activity to the 3rd in-star larvae of mosquito Culex pipiens were analyzed by the gel. The only single protein band of 42 Kd toxic to the larvae was formed. The major toxic protein being produced from the B. sphaericus 1593 and the pSL 2-1 clone was found to be the 42 Kd.

  • PDF