• Title/Summary/Keyword: H.283

Search Result 374, Processing Time 0.03 seconds

Sargassum sp. Attenuates Oxidative Stress and Suppresses Lipid Accumulation in vitro (모자반추출물의 항산화활성 및 지방세포 생성억제 효과)

  • Kim, Jung-Ae;Karadeniz, Fatih;Ahn, Byul-Nim;Kwon, Myeong Sook;Mun, Ok-Ju;Kim, Mihyang;Lee, Sang-Hyeon;Yu, Ki Hwan;Kim, Yuck Yong;Kong, Chang-Suk
    • Journal of Life Science
    • /
    • v.24 no.3
    • /
    • pp.274-283
    • /
    • 2014
  • Oxidative stress causes tissue damage and facilitates the progression of metabolic diseases, including diabetes, cardiovascular heart diseases, and obesity. Lipid accumulation and obesity-related complications have been observed in the presence of extensive oxidative stress. As part of an ongoing study to develop therapeutic supplements, Sargassum sp. were tested for their ability to scavenge free radicals and intracellular reactive oxygen species (ROS), as well as to suppress lipid accumulation. Three species, S. hemiphyllum, S. thunbergii, and Sargassum horneri, were shown to scavenge free radicals in a di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium (DPPH) assay. In addition, Sargassum sp. was shown to scavenge intracellular ROS and to decrease nitric oxide (NO) production in $H_2O_2$ and lipopolysaccharide (LPS)-induced in RAW264.7 mouse macrophages, respectively. Taken together, the results suggest that Sargassum sp. possess huge potential to relieve oxidative stress and related complications, as well as lipid-induced oxidation. They indicate that S. hemiphyllum, S. thunbergii, and S. horneri are potent functional supplements that can produce beneficial health effects through antioxidant and antiobesity activities, with S. hemiphyllum being the most potent among the Sargassum sp. tested. A potential mechanism for the effect of Sargassum sp. on the suppression of lipid accumulation in differentiating 3T3-L1 mouse preadipocytes through deactivation of the peroxisome proliferator-activated receptor ${\gamma}$ (PPAR ${\gamma}$) is presented.

A Study on Public Nuisance in Han River and Nackdong River Part II. Survey on Water Pollution (공해(公害)에 관(關)한 조사연구(調査硏究) 제이편(第二編) 한강(漢江), 낙동강(洛東江) 수질오염도(水質汚染度)에 관(關)한 비교(比較) 조사(調査) 연구(硏究))

  • Cha, Chul-Hwan;Shin, Young-Soo;Park, Soon-Young;Cho, Kwang-Soo;Choo, Chong-Yoo;Kim, Kyo-Sung;Choi, Dug-Il
    • Journal of Preventive Medicine and Public Health
    • /
    • v.4 no.1
    • /
    • pp.65-76
    • /
    • 1971
  • In view of ever rising water pollution problems of river in the vicinity of large urban communities, the author has made an investigation on the pollution of water sampled from Han River (Seoul area) and Nakdong River (Daegu city area) during the period from July to December, 1970. The water samples were taken twice a month during the study period of 6 months from 7 points (locations) along the main stream of Han River at Seoul city and 5 points of Nakdong River at Daegu city. The samples ware measured and analyzed in accordance with the recognized methods in the 'Standard Methods for Examination of Water and waste' by American Public Health Association. The obtained results are as follows : I. Han River. 1. Average turbidity was 5.1 units ranging from 1 to 10 units and the turbidity of down stream was higher than that of the upper stream. 2. pH value showed slight alkalinity (mean;7.2) except Yunchang-Dong (6.9). 3. The mean value of Dissolved Oxygen contents (D.O) was 7.2 ppm. (range of 3.4-10.5ppm.). D.O. of the upper stream (8.2 ppm. at Walker Hill boating place, 8.0 ppm. at the Gwangzang Bridge and Ddookdo) was higher than that of he downstream (5.6ppm. at Yumchang-Dong, 6.4 ppm. at the 2nd Han River Bridge), and D.O. in the winter season was higher than that in the summer season, respectively. 4 The mean value of the Biochemical Oxygen Demand (B.O.D.) was 28.3 ppm. (range of 6.2-64.8 ppm.). The mean value of B.O.D. was 48.7 ppm. at Yumchang-Dong, 42.3 ppm. at the 2nd Han River Bridge, 34.0 ppm. at the 1st nan River Bridge, 28.5 ppm. at the 3rd Han River Bridge, 19.2 ppm. at Dookdo, 13.2 ppm. at the Gwangzang Bridge, and 10.2 ppm. at the Walker Hill boating place in order of value. B.O.D. in July and August (35.6 and 34.5 ppm.) were the highest and that in November and December (18.6 and 21.2 ppm.) were the lowest. 5. Suspended Solids (SS) were from 15.0 to 667.0 ppm. with the mean of 222.1 ppm. 'Suspended Solids' of the water samples at Yumchang-Dong and the 2nd Han River Bridge were found to be 378.1 ppm. and 283.9 ppm. respectively which were higher than at the Gwangzang Bridge (134.1 ppm.) and at Walker Hill boating place (79.3ppm.). 6. Coliform colonies counting of the water samples ranged from $0-2,500{\times}10/100ml$. with the mean value of $205.6{\times}10/100ml$. The most contaminated water sample by coliform were from the point of the 2nd Han River Bridge with $640.8{\times}10/100ml$ while the lowest ones were from Walker Hill boating place with $17.2{\times}10/100ml$. There was also a seasonal variation in coliform contamination that is the higher in summer and the lower in winter. II. Nakdong River 1. The mean value of turbidity was 2.3 units with range of 0 to 9.0 units. The highest point was at Geumho River (7.2 units). and the lowest point was at Gangzung and Moonsan (0.45 and 0.41 units). 2. The mean value of pH was 7.5 (range of 7.1-8.5) and highest point was Geumho River with 8.5. 3. The mean value of D.O. was 8.1 ppm. (range of 3.4-11.2 ppm.). D.O. of the upper stream showed higher value than that of the down stream, and the winter season than the summer season. 4. B.O.D. ranged from 2.6 to 57.0 ppm. (mean; 20.4ppm.). The water sample at Geumho River showed the highest value (41.5 ppm.) while at Moonsan and Gangzung showed the lowest (4.6 and 4.7 ppm.). 5. The mean value of suspended solids was 48.7 ppm. (range of 4.0-182.0 ppm.). The highest month was July (63.7ppm.) and August (62.1 ppm.) and the lowest month was October (37.0 ppm.) and December (24.4 ppm.). 6. The mean value of the coliform colonies was $22.7{\times}10/100ml$. (range of $0-243{\times}10/100ml$.). The highest number of the colonies was found in the sample water at the Whawon recreation area ($50.5{\times}10/100ml$.) followed by the Geumho River ($33.9{\times}10/100ml$.), the Goryung Bridge ($28.3{\times}10/100ml$.), Gangzung($0.7{\times}10/100ml$), and Moonsan ($0.6{\times}10/100ml$.).

  • PDF

Nitrogen Removal Rate of A Subsurface Flow Treatment Wetland System Constructed on Floodplain During Its Initial Operating Stage (하천고수부지 수질정화 여과습지의 초기운영단계 질소제거)

  • Yang, Hong-Mo
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.4
    • /
    • pp.278-283
    • /
    • 2003
  • This study was carried out to examine the nitrogen removal rate of a subsurface-flow treatment wetland system which was constructed on floodplain of the Kwangju River from May to June 2001. Its dimensions were 29m in length, 9m in width and 0.65m in depth. A bottom layer of 45cm in depth was filled with crushed granite with about $15{\sim}30\;mm$ in diameter and a middle layer of 10cm in depth had pea pebbles with about 10 mm in diameter. An upper layer of 5 cm in depth contained course sand. Reeds (Phragmites australis) were transplanted on the surface of the system. They were dug out of natural wetlands and stems were cut at about 40 cm height from their bottom ends. Water of the Kwangju River flowed into it via a pipe by gravity flow and its effluent was funneled back into the river. The height of reed stems was 44.2 cm in July 2001 and 75.3cm in September 2001. The number of stems was increased from $80\;stems/m^2$ in July 2001 to $136\;stems/m^2$ in September 2001. Volume and water quality of inflow and outflow were analyzed from July 2001 through December 2001. Inflow and outflow averaged 40.0 and $39.2\;m^3/day$, respectively. Hydraulic detention time was about 1.5 days. Average nitrogen uptake by reeds was $69.31\;N\;mg/m^2/day$. Removal rate of $NO_3-N$, $NH_3-N$, T-N averaged 195.58, 53.65, and $628.44\;mg/m^2/day$, respectively. Changes of $NO_3-N$ and $NH_3-N$ abatement rates were closely related to those of wetland temperatures. The lower removal rate of nitrogen species compared with that of subsurface-flow wetlands operating in North America could be attributed to the initial stage of the system and inclusion of two cold months into the six-month monitoring period. Increase of standing density of reeds within a few years will develop both root zones suitable for the nitrification of ammonia and surface layer substrates beneficial to the denitrification of nitrates into nitrogen gases, which may lead to increment in the nitrogen retention rate.

Studies on Sclerotium rolfsii Sacc. isolated from Magnolia kobus DC. in Korea (목련(Magnolia kobus DC.)에서 분리한 흰비단병균(Sclerotium rolfsii Sacc.)에 관한 연구)

  • Kim Kichung
    • Korean journal of applied entomology
    • /
    • v.13 no.3 s.20
    • /
    • pp.105-133
    • /
    • 1974
  • The present study is an attempt to solve the basic problems involved in the control of the Sclerotium disease. The biologic stranis of Sclerotium rolfsii Sacc., pathogen of Sclerotium disease of Magnolia kobus, were differentiated, and the effects of vitamins, various nitrogen and carbon sources on its mycelial growth and sclerotial production have been investigated. In addition the relationship between the cultural filtrate of Penicillium sp. and the growth of Sclerotium rolfsii, the tolerance of its mycelia or sclerotia to moist heat or drought and to Benlate (methyl-(butylcarbamoy 1)-2-benzimidazole carbamate), Tachigaren (3-hydroxy-5-methylisoxazole) and other chemicals were also clarified. The results are summarizee as follows: 1. There were two biologic strains, Type-l and Type-2 among isolates. They differed from each other in the mode of growth and colonial appearance on the media, aversion phenomenon and in their pathogenicity. These two types had similar pathogenicity to the Magnolia kobus and Robinia pseudoacasia, but behaved somewhat differently to the soybaen and cucumber, the Type-l being more virulent. 2. Except potassium nitrite, sodium nitrite and glycine, all of the 12 nitrogen sources tested were utilized for the mycelial growth and sclerotial production of this fungus when 10r/l of thiamine hydrochloride was added in the culture solution. Considering the forms of nitrogen, ammonium nitrogen was more available than nitrate nitrogen for the growth of mycelia, but nitrate nitrogen was better for sclerotia formation. Organic nitrogen showed different availabilities according to compounds used. While nitrite nitrogen was unavailable for both mycelial growth and sclerotial formation whether thiamine hydrochlioride was added or not. 3. Seven kinds of carbon sources examined were not effective in general, as long as thiamine hydrochloride was not added. When thiamine hydrochloride was added, glucose and saccharose exhibited mycelial growth, while rnaltose and soluble starch gave lesser, and xylose, lactose, and glycine showed no effect at all,. In the sclerotial production, all the tested carbon sources, except lactose, were effective, and glucose, maltose, saccharose, and soluble starch gave better results. 4. At the same level of nitrogen, the amount of mycelial growth increased as more carbon Sources were applied but decreased with the increase of nitrogen above 0.5g/1. The amount of sclerotial production decreased wi th the increase of carbon sources. 5. Sclerotium rolfsii was thiamine-defficient and required thiamine 20r/l for maximun growth of mycelia. At a higher concentration of more than 20r/l, however, mycelial growth decreased as the concentration increased, and was inhibited at l50r/l to such a degree of thiamine-free. 6. The effect of the nitrogen sources on the mycelial growth under the presence of thiamine were recognized in the decreasing order of $NH_4NO_3,\;(NH_4)_2SO_4,\;asparagine,\;KNO_3$, and their effects on the sclerotial production in the order of $KNO_3,\;NH_4NO_3,\;asparagine,\;(NH_4)_2SO_4$. The optimum concentration of thiamine was about 12r/l in $KNO_3$ and about 16r/l in asparagine for the growth of mycelia; about 8r/l in $KNO_3$ and $NH_4NO_3$, and 16r/l in asparagine for the production of sclerotia. 7. After the fungus started to grow, the pH value of cultural filtrate rapidly dropped to about 3.5. Hereafter, its rate slowed down as the growth amount increased and did not depreciated below pH2.2. 8. The role of thiamine in the growth of the organism was vital. If thiamine was not added, the combination of biotin, pyridoxine, and inositol did not show any effects on the growth of the organism at all. Equivalent or better mycelial growth was recognized in the combination of thiamine+pyridoxine, thiamine+inositol, thiamine+biotin+pyridoxine, and thiamine+biotin+pyridoxine+inositol, as compared with thiamine alone. In the combinations of thiamine+biotin and thiamine+biotin+inositol, mycelial growth was inhibited. Sclerotial production in dry weight increased more in these combinations than in the medium of thiamine alone. 9. The stimulating effects of the Penicillium cultural filtrate on the mycelial growth was noticed. It increased linearly with the increase of filtrate concentration up to 6-15 ml/50ml basal medium solution. 10. $NH_4NO_3$. as a nitrogen source for mycelial growth was more effective than asparasine regardless of the concentration of cultural filtrate. 11. In the series of fractionations of the cultural filtrate, mycelial growth occured in unvolatile, ether insoluble cation-adsorbed or anion-unadsorbed substance fractions among the fractions of volatile, unvolatile acids, ether soluble organic acids, ether insoluble, cation-adsorbed, cation-unadsorbed, anion-adsorbed and anion-unadsorbed. and anion-un-adsorbed substance tested. Sclerotia were produced only in cation-adsorbed fraction. 12. According to the above results, it was assumed that substances for the mycelial growth and sclerotial formation and inhibitor of sclerotial formation were include::! in cultural filtrate and they were quite different from each other. I was further assumed that the former two substances are un volatile, ether insotuble, and adsorbed to cation-exchange resin, but not adsorbed to anion, whereas the latter is unvolatile, ether insoluble, and not adsorbed to cation or anion-exchange resin. 13. Seven amino acids-aspartic acid, cystine, glysine, histidine, Iycine, tyrosine and dinitroaniline-were detected in the fractions adsorbed to cation-exchange resin by applying the paper chromatography improved with DNP-amino acids. 14. Mycelial growth or sclerotial production was not stimulated significantly by separate or combined application of glutamic acid, aspartic acid, cystine, histidine, and glysine. Tyrosine gave the stimulating effect when applied .alone and when combined with other amino acids in some cases. 15. The tolerance of sclerotia to moist heat varied according to their water content, that was, the dried sclerotia are more tolerant than wet ones. The sclerotia harvested directly from the media, both Type-1 and Type-2, lost viability within 5 minutes at $52^{\circ}C$. Sclerotia dried for 155 days at$26^{\circ}C$ had more tolerance: sclerotia of Type-l were killed in 15 mins. at $52^{\circ}C$ and in 5 mins. at $57^{\circ}C$, and sclerotia of Type-2 were killed in 10 mins. both at $52^{\circ}C$ or $57^{\circ}C$. 16. Cultural sclerotia of both strains maintained good germinability for 132 days at$26^{\circ}C$. Natural sclerotia of them stored for 283 days under air dry condition still had good germinability, even for 443 days: type-l and type-2 maintained $20\%$ and $26.9\%$ germinability, respectively. 17. The tolerance to low temperature increased in the order of mycelia, felts and sclerotia. Mycelia completely lost the ability to grow within 1 week at $7-8^{\circ}C$> below zero, while mycelial felts still maintained the viability after .3 weeks at $7-20^{\circ}C$ below zero, and sclerotia were even more tolerant. 18. Sclerotia of type-l and type-2 were killed when dipped into the $0.05\%$ solution of mercury chloride for 180 mins. and 240 mins. respectively: and in the $0.1\%$ solution, Type-l for 60 mins. and Type-2 for 30 mins. In the $0.125\%$ uspulun solution, Type-l sclerotia were killed in 180 mins., and those of Type-2 were killed for 90 mins. in the$0.125\%$solution. Dipping into the $5\%$ copper sulphate solution or $0.2\%$ solution of Ceresan lime or Mercron for 240 mins. failed to kill sclerotia of either Type-l or Type-2. 19. Inhibitory effect on mycelial growth of Benlate or Tachi-garen in the liquid culture increased as the concentration increased. 6 days after application, obvious inhibitory effects were found in all treatments except Benlate 0.5ppm; but after 12 days, distingushed diflerences were shown among the different concentrations. As compared with the control, mycelial growth was inhibited by $66\%$ at 0.5ppm and by $92\%$ at 2.0ppm of Benlate, and by$54\%$ at 1ppm and about $77\%$ at 1.5ppm or 2.0ppm of Tachigaren. The mycelial growth was inhibited completely at 500ppm of both fungicides, and the formation of sclerotia was checked at 1,000ppm of Benlate ant at 500ppm or 1,000ppm of Tachigaren. 20. Consumptions of glucose or ammonium nitrogen in the culture solution usually increased with the increment of mycelial growth, but when Benlate or Tachigaren were applied, consumptions of glucose or ammonium nitrogen were inhibited with the increment of concentration of the fungicides. At the low concentrations of Benlate (0.5ppm or 1ppm), however, ammonium nitrogen consumption was higher than that of the ontrol. 21. The amount of mycelia produced by consuming 1mg of glucose or ammonium nitrogen in the culture solution was lowered markedly by Benlate or Tachigaren. Such effects were the severest on the third day after their treatment in all concentrations, and then gradually recovered with the progress of time. 22. In the sand culture, mycelial growth was not inhibited. It was indirectly estimated by the amount of $CO_2$ evolved at any concentrations, except in the Tachigaren 100mg/g sand in which mycelial growth was inhibited significantly. Sclerotial production was completely depressed in the 10mg/g sand of Benlate or Tachigaren. 23. There was no visible inhibitory effect on the germination of sclerotia when the sclerotia were dipped in the solution 0.1, 1.0, 100, 1.000ppm of Benlate or Tachigaren for 10 minutes or even 20 minutes.

  • PDF