• Title/Summary/Keyword: H-uptake

Search Result 1,169, Processing Time 0.061 seconds

Biosorption of Lead and Cadmium by Fucoidan from Undariafinnatifida (미역 포자엽 fucoidan의 중금속 흡착 특성)

  • KOO Jae-Geun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.5
    • /
    • pp.521-525
    • /
    • 2001
  • Screening tests of different fucoidan fractions from Sporophylls of Undazia pinnatifida, Laminaria religiosa, Hizikia fusiforme and Sagassum fulvellum revealed that the highest biosorptive Pb and Cd uptake fraction was Undaria finnatifida Fr-3.0 prepared by dissolving the precipitated complex (crude fucoidan and cetylpyridinum chloride) with 3.0 M $CaCl_2$ solution, The Pb and Cd uptake by Undaria finnatifida Fr-3.0 was quantitatively evaluated using sorption isotherms and Langmuir sorption model. The Pb and Cd uptake by Undaria finnatifida Fr-3.0 increased with increasing pH values at high equilibrium residual concentration. The highest experimentally observed Pb and Cd uptake value in the sorption isotherm for pH 5.5 were 94 mg/g (at $C_f=164\;mg/L$) and 64 mg/g (at $C_f=197\;mg/L$) respectively, and $q_{max}$ of Pb and Cd calculated by Langmuir sorption model were 178 mg/g and 122 mg/g, respectively. In the low equilibrium concentration range, up to 20 mg/L, the Pb uptake remained unchanged in the presence of Cd, but decreased at higher equilibrium concentration range.

  • PDF

Characteristics of Salt Adsorption by Calcium Alginate Beads (칼슘알긴산비드에 의한 염분의 흡착특성)

  • 방병호;서정숙
    • The Korean Journal of Food And Nutrition
    • /
    • v.15 no.2
    • /
    • pp.89-96
    • /
    • 2002
  • The adsorption characteristics of sodium chloride into Ca-alginate beads have been investigated and the result were as follows: Sodium chloride uptake by Ca-alginate beads increased with time. The highest uptake volume of sodium chloride was 4.2g after 10 minutes. The uptake volume by Fe, Ca, Ba, and Sr-alginate beads was 5.6g, 4.2g, 4.2g and 4.0g, respectively but in case of Fe-alginate beads, the induced hydrogel beads were very fragile and the strength of Fe-alginate beads were weaker than Ca- and Ba-alginate beads. Mg-alginate bead was not formed and Ca-, Ba- and Sr-alginate beads had a similar uptake volume about 4.2g, respectively. The uptake volume of sodium chloride by CaCl$_2$concentration(0.1M. 0.2M and 1M), curing solution, was 4.8, 4.2g and 4.1g, respectively. The uptake volume by sodium alginate concentration(0.6%, 1% and 2%) was 2.8g, 4.0g, and 4.4g, respectively and Ca-alginate bead size was not effected in uptake sodium chloride. The uptake rate on initial sodium chloride concentration(4%, 8%, 12% and 16%) was 30%, 28%, 27% and 25%, respectively. The uptake rate on basic pH(10.0) was higher than when compared to other neutral pH(6.8) and acidic pH(4.0). The initial uptake velocity of sodium chloride from immobilization beads with salt resistant bacteria was lower than that of non-immobilization beads. The uptake rate of sodium chloride was decreased according to elongation of curing time. Reusability of Ca-alginate beads was possible but according to reutilization, the salt uptake volume of beads was also decreased. The uptake volume of sodium chloride from Doengjang by Ca-alginate beads on time course(3, 6, 12, and 24 hour) was revealed 5g, 6g, 7g and 7g, respectively.

Different mechanisms mediate uptake of lead in a rat glial cell line

  • Cheong, Jae-Hoon;Tan, Tan Blendyl;Kim, Y.B.;Bannon, Bannon Desmond;Olivi, Olivi Luisa;Bressler, Bressler Joseph
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.117.2-117.2
    • /
    • 2003
  • The mechanism by which lead enters glial cells was examined. The uptake of lead reached saturation when assays were performed in buffers at pH 5.5 and 7.4. The Vmax and Km was 2.7 pmoles/mg protein/min and 13.4 M in the buffer at pH 7.4, respectively, whereas the Vmax and Km was 329 fmoles/mg and 8.2 M in the buffer at pH 5.5, respectively. Uptake in a buffer at pH 5.5 but not at pH 7.4 was inhibited by iron. Cells treated with the iron chelator desferoxamine displayed higher levels of the divalent metal transporter mRNA and protein. (omitted)

  • PDF

pH Effect on Lead Transport into astrocytes by Divalent Metal Transporter 1 (DMT1/Nramp2)

  • Cheong, Jae-Hoon;Desmond I. Bannon;Josep P. Bressler
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2001.11a
    • /
    • pp.91-91
    • /
    • 2001
  • Nramp2, also known as DMT1 and DCT1, is a 12-transmembrane domain protein responsible for dietary iron uptake as well as metal ions such as lead, manganese, zinc, copper, nickel, cadmium, and cobalt. High expression of DMT1 increase lead uptake, and DMT1-dependent lead transport was H -dependent and inhibited by iron ions. The molecular mechanism of lead transport in CNS is as yet unknown. although interactions between iron and lead at the level of absorption have been known for some time. The process of lead uptake into astrocytes was not known yet. Nramp2 may mediate transport of heavy metal into astrocytes. We investigated whether Nramp2 mediate transport of lead into astrocytes. And we do whether Nramp2 was expressed highly by deprivation of iron in Astrocytes, and lead uptake into astrocytes was influenced by expression of Nramp2. Immortalized human fetal astrocyte(SV-FHA) cells were cultured in medium containing Dulbecco's modified Eagle's medium and treated with Deferoxamine. Northern blot analysis was done for determining mRNA level of DMT1 and lead uptake assay was done in incubation condition of pH 5.5 and 7.4.

  • PDF

Calcium Ion Effect on the Sugar-H+ -Cotransport System in Chlorella vulgaris (Chlorella vulgaris의 당류 능동수송계에 미치는 칼슘 이온의 영향)

  • 조봉희
    • Journal of Plant Biology
    • /
    • v.36 no.4
    • /
    • pp.321-326
    • /
    • 1993
  • Sugar uptake is accompanied with H+-substrate-symport generally. Both H+/sugar-and H+/K+ stoichiometries during the sugar-uptake have been reported to be exactly 1 : 1. This paper reports that the stoichiometries were enhanced dramatically by the addition of CaCl2 into the medium and by the high cell density of 200 $\mu$L pc/mL. The concentration of free Ca2+ ions in the cells increased significantly with cell density. It is suggested that the free Ca2+ ions are responsible for the change of stoichiometry of sugar transport system by regulation of H+ ion level of biomembrane.

  • PDF

Regulation of Taurine Transporter Activity by Glucocorticoid Hormone

  • Kim, Ha-Won;Shim, Mi-Ja;Kim, Won-Bae;Kim, Byong-Kak
    • BMB Reports
    • /
    • v.28 no.6
    • /
    • pp.527-532
    • /
    • 1995
  • Human taurine transporter has 12 transmembrane domains and its molecular weight is 69.6 kDa. The long cytoplasmic carboxy and amino termini might function as regulatory attachment sites for other proteins. Six potential protein kinase C phosphorylation sites have been reported in human taurine transporter. In this report, we studied the effects of phorbol 12-myristate 13-acetate (PMA) and glucocorticoid hormone on taurine transportation in the RAW 264.7, mouse macrophage cell line. When the cells were incubated with $[^{3}H]taurine$ in the presence or absence of $Na^+$ ion for 40 min at $37^{\circ}C$, the [$[^{3}H]taurine$ uptake rate was 780-times higher in the $Na^{+}-containing$ buffer than in the $Na^{+}-deficient$ buffer, indicating that this cell line expresses taurine transporter protein on the cell surface. THP1, a human promonocyte cell line, also showed a similar property. The $[^{3}H]taurine$ uptake rate was not influenced by the inflammatory inducing cytokines such as interleukin-1, gamma-interferon or interleukin-1+gamma-interferon, but was decreased by the PMA in the RAW 264.7 cell line. This suggests that activation of protein kinase C inhibits taurine transporter activity directly or indirectly. The inhibition of $[^{3}H]taurine$ uptake by PMA was time-dependent. Maximal inhibition occurred in one hr stimulation with PMA Increasing the treatment time beyond one h reduced the $[^{3}H]taurine$ uptake inhibition due to the depletion or inactivation of protein kinase C. The cell line also showed concentration-dependent $[^{3}H]taurine$ uptake under PMA stimulation. The phorbol-ester caused 23% inhibition at the concentration of 1 ${\mu}m$ PMA. The inhibition was significant even at a concentration as low as 10 nM PMA The reduced $[^{3}H]taurine$ uptake could be recovered by treatment with glucocorticosteroid hormone. Dexamethasone led to recover of the reduced taurine uptake induced by phorbol-ester, recovering maximally after one hr. This may suggest that macrophage cells require higher taurine concentration in a stressed state, for the secretion of glucocorticoid hormone is increased by hypothalamo-pituitary-adrenocortical (HPA) axis activation in the blood stream.

  • PDF

Increased Expression of the ${\alpha}_2$ Isoform of (Na,K)ATPase in the Differentiated Murine Muscle Cell Line BC3H-1 (BC3H-1 분화세포에서의 (Na,K)ATPase ${\alpha}_2$ isoform의 표현증대)

  • Lee, Kyung-Lim
    • YAKHAK HOEJI
    • /
    • v.40 no.6
    • /
    • pp.734-738
    • /
    • 1996
  • The development of the alpha2 isoform of (Na,K)ATPase which is high affinity ouabain receptors was studied in the differentiating nonfusing muscle cell line BC3H-1. T he differentiation process of BC3H-1 cell line was confirmed by 2-dexy-D-[$^3$H] glucose uptake experiment and the quantity of the expression of ${\alpha}_2$ isoform was measured using a whole cell [$^3$H] ouabain-binding assay. Undifferentiated growing BC3H-1 cells, myoblasts, exhibited low levels of insulin-stimulated glucose uptake and [$^3$H] ouabain-binding sites. In contrast, differentiated BC3H-1 cells, myocytes, had a 5.6-fold increase in insulin-stimulated glucose uptake and 5-fold increase in [$^3$H] ouabain-binding sites. Scatchard analysis showed that myocytes developed more [$^3$H] ouabain-binding sites than myoblasts vath a dissociation constant (kd) of 6${\times}10^{-8}$M and capacity of 6.l${\times}10^{-5}$ sites/cell. Therefore. it seems that myoblasts express low levels of ${\alpha}_2$ subunit and probably the majority of ${\alpha}_1$ subunit, whereas myocytes express high levels of ${\alpha}_2$ isoform. The results indicate that the expression of ${\alpha}_2$ isoform is developmentally regulated during differentiation and that BC3H-1 culture system provides an excellent model for the study of differentiation and mechanism of (Na,K)ATPase action in muscle which requires electrical excitability.

  • PDF

Biosorption of Pb and Cu by Kjellmaniella crassifolia (개다시마를 이용한 Pb 및 Cu 흡착)

  • 안갑환;서근학;오창섭
    • Journal of Environmental Science International
    • /
    • v.7 no.5
    • /
    • pp.653-658
    • /
    • 1998
  • Marine algaes are capable of binding a large quantity of heavy metals. We have investigated the uptake capacity of Pb and Cu by using 22 species of marine algae. collected from Korean coast. Among a variety of different marine algae types for biosorbent potential. Kjellmaniella crassifolia showed the highest uptake capacity of Pb. Metal uptake of Pb and Cu by Kjellmaniella crassifolia increase as the initial concentration rises, as long as binding sites are remained. The metal uptake parameters for Pb and Cu had been determined according to Langmuir and Freundlich model. By increasing pH, Pb uptake was increased and Cu uptake was constant. The maximum uptake capacity of Pb and Cu by Kjellmaniella crassifolia was 437 mg/g and 129 mg/g, respectively.

  • PDF

Pharmacokinetics and Blood-Brain Barrier Permeability of Taurine in Spontaneously Hypertensive Rats and Normotensive Rats (자연발생 고혈압 흰쥐와 정상흰쥐 데서 타우린의 체내동태 및 뇌투과성)

  • 강영숙;임지현;김안근
    • Biomolecules & Therapeutics
    • /
    • v.8 no.2
    • /
    • pp.194-198
    • /
    • 2000
  • Taurine, 2-aminoethanesulfonic acid is widely distributed in animal tissues and has a variety of bio-logical activities. A recent worldwide study demonstrated beneficial effects of taurine on aging and age-associated disorders. In general, taurine levels in the brain decease when an animal is subjected to pathologic conditions such as ischemia-anoxia and seizure. But the taurine levles tend to increase in the brain in hypertensive state. In the present study, the blood-brain barrier (BBB) transport of [$^3$H]taurine was compared between spontaneously hypertensive rats (SHR) and normotensive Sprague-Dawley rats (SD) using intravenous injection technique in vivo. We also obtained pharmacokinetic parameters of plasma volume maker, [$^{14}$ C] sucrose and [$^3$H]taurine after inject to rats simulatenously. BBB permeability surface area product (PS) value of [$^3$H]taurine in SHR (16$\pm$2.9$\times$10$^{-3}$ ml/min/g) was significantly higher than that in SD (7.4$\pm$0.8$\times$10$^{-3}$ ml/min/g). There is also significant difference for brain uptake of [$^3$H]taurine between SHR (0.195$\pm$0.031%ID/g) and SD (0.058$\pm$0.003% ID/g). This is due to difference of area under the plasma concentration-time curve (AUC) and that of total clearance (Class) between SHR and SD. No significant difference was indicated from other organ uptakes such as lung, heart, liver SHR and SD. But also kidney uptake was much higher in SHR. In conclusion, [$^3$H]taurine in plasma was slowly eliminated in SHR than in SD and uptake of [$^3$H]taurine in SHR is much higher than that of SD. This results suggest increased taurine level in the brain in hypertension state have an any effect on the brain uptake of taurine.

  • PDF

Involvement of a Novel Organic Cation Transporter in Paeonol Transport Across the Blood-Brain Barrier

  • Gyawali, Asmita;Krol, Sokhoeurn;Kang, Young-Sook
    • Biomolecules & Therapeutics
    • /
    • v.27 no.3
    • /
    • pp.290-301
    • /
    • 2019
  • Paeonol has neuroprotective function, which could be useful for improving central nervous system disorder. The purpose of this study was to characterize the functional mechanism involved in brain transport of paeonol through blood-brain barrier (BBB). Brain transport of paeonol was characterized by internal carotid artery perfusion (ICAP), carotid artery single injection technique (brain uptake index, BUI) and intravenous (IV) injection technique in vivo. The transport mechanism of paeonol was examined using conditionally immortalized rat brain capillary endothelial cell line (TR-BBB) as an in vitro model of BBB. Brain volume of distribution (VD) of [$^3H$]paeonol in rat brain was about 6-fold higher than that of [$^{14}C$]sucrose, the vascular space marker of BBB. The uptake of [$^3H$]paeonol was concentration-dependent. Brain volume of distribution of paeonol and BUI as in vivo and inhibition of analog as in vitro studies presented significant reduction effect in the presence of unlabeled lipophilic compounds such as paeonol, imperatorin, diphenhydramine, pyrilamine, tramadol and ALC during the uptake of [$^3H$]paeonol. In addition, the uptake significantly decreased and increased at the acidic and alkaline pH in both extracellular and intracellular study, respectively. In the presence of metabolic inhibitor, the uptake reduced significantly but not affected by sodium free or membrane potential disruption. Similarly, paeonol uptake was not affected on OCTN2 or rPMAT siRNA transfection BBB cells. Interestingly. Paeonol is actively transported from the blood to brain across the BBB by a carrier mediated transporter system.