• Title/Summary/Keyword: H-subspace

Search Result 84, Processing Time 0.029 seconds

GENERALIZED BOUNDED ANALYTIC FUNCTIONS IN THE SPACE Hω,p

  • Lee, Jun-Rak
    • Korean Journal of Mathematics
    • /
    • v.13 no.2
    • /
    • pp.193-202
    • /
    • 2005
  • We define a general space $H_{{\omega},p}$ of the Hardy space and improve that Aleman's results to the space $H_{{\omega},p}$. It follows that the multiplication operator on this space is cellular indecomposable and that each invariant subspace contains nontrivial bounded functions.

  • PDF

HEREDITARY PROPERTIES OF CERTAIN IDEALS OF COMPACT OPERATORS

  • Cho, Chong-Man;Lee, Eun-Joo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.41 no.3
    • /
    • pp.457-464
    • /
    • 2004
  • Let X be a Banach space and Z a closed subspace of a Banach space Y. Denote by L(X, Y) the space of all bounded linear operators from X to Y and by K(X, Y) its subspace of compact linear operators. Using Hahn-Banach extension operators corresponding to ideal projections, we prove that if either $X^{**}$ or $Y^{*}$ has the Radon-Nikodym property and K(X, Y) is an M-ideal (resp. an HB-subspace) in L(X, Y), then K(X, Z) is also an M-ideal (resp. HB-subspace) in L(X, Z). If L(X, Y) has property SU instead of being an M-ideal in L(X, Y) in the above, then K(X, Z) also has property SU in L(X, Z). If X is a Banach space such that $X^{*}$ has the metric compact approximation property with adjoint operators, then M-ideal (resp. HB-subspace) property of K(X, Y) in L(X, Y) is inherited to K(X, Z) in L(X, Z).

QUANTUM MARKOVIAN SEMIGROUPS ON QUANTUM SPIN SYSTEMS: GLAUBER DYNAMICS

  • Choi, Veni;Ko, Chul-Ki;Park, Yong-Moon
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.4
    • /
    • pp.1075-1087
    • /
    • 2008
  • We study a class of KMS-symmetric quantum Markovian semigroups on a quantum spin system ($\mathcal{A},{\tau},{\omega}$), where $\mathcal{A}$ is a quasi-local algebra, $\tau$ is a strongly continuous one parameter group of *-automorphisms of $\mathcal{A}$ and $\omega$ is a Gibbs state on $\mathcal{A}$. The semigroups can be considered as the extension of semi groups on the nontrivial abelian subalgebra. Let $\mathcal{H}$ be a Hilbert space corresponding to the GNS representation con structed from $\omega$. Using the general construction method of Dirichlet form developed in [8], we construct the symmetric Markovian semigroup $\{T_t\}{_t_\geq_0}$ on $\mathcal{H}$. The semigroup $\{T_t\}{_t_\geq_0}$ acts separately on two subspaces $\mathcal{H}_d$ and $\mathcal{H}_{od}$ of $\mathcal{H}$, where $\mathcal{H}_d$ is the diagonal subspace and $\mathcal{H}_{od}$ is the off-diagonal subspace, $\mathcal{H}=\mathcal{H}_d\;{\bigoplus}\;\mathcal{H}_{od}$. The restriction of the semigroup $\{T_t\}{_t_\geq_0}$ on $\mathcal{H}_d$ is Glauber dynamics, and for any ${\eta}{\in}\mathcal{H}_{od}$, $T_t{\eta}$, decays to zero exponentially fast as t approaches to the infinity.

ON OPERATOR INTERPOLATION PROBLEMS

  • Jo, Young-Soo;Kang, Joo-Ho;Kim, Ki-Sook
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.3
    • /
    • pp.423-433
    • /
    • 2004
  • In this paper we obtained the following: Let H. be a Hilbert space and (equation omitted) be a subspace lattice on H. Let X and Y be operators acting on H. If the range of X is dense in H, then the following are equivalent: (1) there exists an operator A in Alg(equation omitted) such that AX = Y, (2) sup (equation omitted) Moreover, if condition (2) holds, we may choose the operator A such that ∥A∥ = K.

CONTINUITY OF LINEAR OPERATOR INTERTWINING WITH DECOMPOSABLE OPERATORS AND PURE HYPONORMAL OPERATORS

  • Park, Sung-Wook;Han, Hyuk;Park, Se Won
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.16 no.1
    • /
    • pp.37-48
    • /
    • 2003
  • In this paper, we show that for a pure hyponormal operator the analytic spectral subspace and the algebraic spectral subspace are coincide. Using this result, we have the following result: Let T be a decomposable operator on a Banach space X and let S be a pure hyponormal operator on a Hilbert space H. Then every linear operator ${\theta}:X{\rightarrow}H$ with $S{\theta}={\theta}T$ is automatically continuous.

  • PDF

SKEW COMPLEX SYMMETRIC OPERATORS AND WEYL TYPE THEOREMS

  • KO, EUNGIL;KO, EUNJEONG;LEE, JI EUN
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.4
    • /
    • pp.1269-1283
    • /
    • 2015
  • An operator $T{{\in}}{\mathcal{L}}({\mathcal{H}})$ is said to be skew complex symmetric if there exists a conjugation C on ${\mathcal{H}}$ such that $T=-CT^*C$. In this paper, we study properties of skew complex symmetric operators including spectral connections, Fredholmness, and subspace-hypercyclicity between skew complex symmetric operators and their adjoints. Moreover, we consider Weyl type theorems and Browder type theorems for skew complex symmetric operators.

UNITARY INTERPOLATION PROBLEMS IN CSL-ALGEBRA ALGL

  • Jo, Yong-Soo;Kang, Joo-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.2
    • /
    • pp.207-213
    • /
    • 2003
  • Given vectors x and y in a Hilbert space, an interpolating operator is a bounded operator T such that Tx=y. An interpolating operator for n-vectors satisfies the equation Ax$_{i}$=y$_{i}$. for i=1,2, …, n. In this article, we investigate unitary interpolation problems in CSL-Algebra AlgL : Let L be a commutative subspace lattice on a Hilbert space H. Let x and y be vectors in H. When does there exist a unitary operator A in AlgL such that Ax=y?

INTERPOLATION PROBLEMS IN ALGL

  • JO YOUNG SOO;KANG JOO HO
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.513-524
    • /
    • 2005
  • Given operators X and Y acting on a Hilbert space H, an interpolating operator is a bounded operator A such that AX = Y. Let L be a subspace lattice on H. We obtained a necessary and sufficient condition for the existence of an interpolating operator A which is in AlgL.

INVERTIBLE INTERPOLATION PROBLEMS IN CSL-ALGEBRA ALGL

  • Jo, Young-Soo;Kang, Joo-Ho
    • Journal of applied mathematics & informatics
    • /
    • v.12 no.1_2
    • /
    • pp.359-365
    • /
    • 2003
  • Given vectors x and y in a Hilbert space, an interpolating operator is a bounded operator T such that Tx = y. In this article, we investigate invertible interpolation problems in CSL-Algebra AlgL : Let L be a commutative subspace lattice on a Hilbert space H and x and y be vectors in H. When does there exist an invertible operator A in AlgL suth that An = ㅛ?