• Title/Summary/Keyword: H-removal reaction

Search Result 617, Processing Time 0.033 seconds

Enhanced Removal of Phenol from Aquatic Solution in a Schorl-catalyzed Fenton-like System by Acid-modified Schorl

  • Xu, Huan-Yan;Prasad, Murari;Wang, Peng
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.803-807
    • /
    • 2010
  • Schorl modified by $H_2SO_4$ has been successfully developed to enhance schorl-catalyzed Fenton-like reaction for removal of phenol in an aqueous solution. The phenol removal percentage can be increased from 4% to 100% by the system of modified schorl and $H_2O_2$. Batch experiments indicate that the percent increases in removal of phenol by increasing the dosage of catalyst, temperature and initial concentration of $H_2O_2$. The results of XRD, FT-IR and SEM suggest that no new phases are formed after removal of phenol by modified schorl. ICP-AES results reveal that more dissolution of iron results in higher catalytic oxidant activity in the system of modified schorl and $H_2O_2$. Besides minor adsorption, mineral-catalyzed Fenton-like reaction governs the process.

A Role of Dissolved Iron ion in Combined Fenton Reaction for Treatment of TNT Contaminated Soil (오염토양처리를 위한 혼합 Fenton 공정에서 용존 철이온이 오염산화처리에 미치는 역할에 관한 연구)

  • Seo, Seung-Won;Kong, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.6
    • /
    • pp.76-82
    • /
    • 2006
  • Fenton's reaction are difficult to apply in the field due to the low pH requirements for the reaction and the loss of reactivity caused by the precipitation of iron (II) at neutral pH. Moreover, Fenton-like reactions using iron mineral instead of injection of iron ion as a catalyst are operated to get high removal result at low pH. Because hydroxyl radical can generate at the surface of iron mineral, there are competition with a lot of hydroxide at around neutral pH. On the other side, to operate Fenton's reaction series at neutral pH, modified Fenton reaction is suggested. The complexes, composed by iron ions (ferrous ion or ferric ion)-chelating agent, could be acted as a catalyst and presented in the solution at neutral pH. However, modified Fenton reaction requires a lot of hydrogen peroxide. Accordingly, the purpose of this experiment was to effectively combine Fenton-like reaction and modified Fenton reaction for extending application of Fenton's reaction. i.e., injecting chelating agents in Fenton-like reaction at around neutral pH is increasing the concentration of dissolved iron ion and highly promoting the oxidation effect. 2,4,6-trinitrotoluene (TNT) was used as a probe compound for comparing reaction efficiencies in this study. If the concentration of dissolved iron ion in combined Fenton process were existed more than 0.1 mM, the total TNT removal were increased. Magnetite-NTA system showed the best TNT removal (76%) and Magnetite-EDTA system indicated about 56% of TNT removal. The results of these experiments proved more promoted 40-60% of TNT removal than Fenton-like reaction's.

Removal Characteristics of Copper from Anthraquinone Dyes by Iron Cementation (안트라퀴논계 염료에서 철 교착반응에 의한 구리의 제거 특성)

  • 천재기;이석희;주창식
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.20 no.1
    • /
    • pp.45-53
    • /
    • 2002
  • The removal of chelated copper from anthraquinone dyes by cementation on powdered iron was studied. The removal of chelated copper was found to be a function of solution pH, amount of NTA and iron, and reaction temperature. In the presence of NTA, reaction rate of cementation was found to be strongly dependent on reaction temperature, solution pH, amount of NTA and amount of iron powder. These experimental results can be explained successfully by the distribution of complexed copper iron in solutions.

  • PDF

A Study on the Decompressed Ammonia Stripping from Ammonia Contained Wastewater (폐수의 감압 암모니아 탈기에 관한 연구)

  • 신대윤;오유경
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.1
    • /
    • pp.93-99
    • /
    • 2001
  • This study aims at finding out pertinent reaction conditions for treating high concentration ammonia contained in N-chemical factory wastewater with decompressed ammonia stripping method that was designed. And it also tries to investigate adsorption capability of removed ammonia to soil. The results from experiments are as follows ; 1. The removal rate of N $H_3$-N of synthetic wastewater was under 85% at pH 10 with decompressed ammonia stripping method. The reaction time in pressure 360 mmHg at pH 11 and 12 was shorter than in 460 mmHg, and the removal rate of N $H_3$-N with decompressed ammonia stripping method at 9$0^{\circ}C$ was 11~15% higher than air stripping 2. The optimum conditions for decompressed ammonia stripping with synthetic sample were shown as pH 12, temperature 9$0^{\circ}C$, internal reaction pressure 460 mmHg and reaction time 50 minutes. These conditions were applied to treat the wastewater containing organic-N 290.5mg/$\ell$, N $H_3$-N 168.9mg/$\ell$, N $O_2$-N 23.2mg/$\ell$, N $O_3$-N 252.4mg/$\ell$, T-N 735mg/$\ell$. Organic-N turned out to be removed 60%, the removal rate of N $H_3$-N IS 94%, T-N is 50%. But N $O_2$-N and N $O_3$-N were increased with 7.8% and 14.9% respectively. 3. The CO $D_{Sr}$ removal rate in decompressed ammonia stripping reaction was 42% and S $O_4$$^{2-}$ was removed 8.2%. It was turned out caused with higher pH and thermolysis. 4. In soil adsorption of ammonia desorbed from the decompressed stripping process of wastewater, the recovery rate was 76% in wet soil.

  • PDF

Phosphate removal efficiency and the removal rate constant by particle sizes of converter slag and conditions of the wastewater (전로슬래그의 입도 크기 및 폐수의 조건 변화에 따른 인산염 제거효율과 제거 속도상수에 관한 연구)

  • Lee, Sang Ho;Hwang, Jeong Jae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.6
    • /
    • pp.841-849
    • /
    • 2012
  • The effluent quality of phosphorus is strengthened by the national standard to conserve water resources to lessen the eutrophication threat. The soluble phosphate in the wastewater effluent can be removed using the converter slag as solid waste produced through the steel making process. The experiments for removal efficiencies and removal constants were performed for this research with the artificial wastewater following several different conditions, particle size, phosphate concentration and initial pH. The correlation coefficients of Freundlich adsorption isothem were 0.9505 for $PS_A$, 0.9183 for $PS_B$, respectively. The removal efficiency was 87-94 % for $PS_A$ and 90-96 % for $PS_B$ respectively. The pH of the wastewater was elevated to pH 11.8 for the initial pH 8.5, phosphate removal efficiency was the highest as 84 % ~ 98 %. In case of 10 mg/L of the intial phosphate, the removal efficiency was 96 ~ 98 %. The more initial pH increases, the higher the reaction rate constant is.

A Study on recycling of waste concrete for ${PO}_4^{3-}$-P removal contained in livestock wastewater (축산폐수에 함유된 ${PO}_4^{3-}$-P의 제거를 위한 폐콘크리트의 재활용에 관한 연구)

  • 김은호;박진식;성낙창;이영형;신남철;전기일
    • Journal of Environmental Science International
    • /
    • v.8 no.2
    • /
    • pp.227-231
    • /
    • 1999
  • This study was conducted to investigate the removal characteristics of $PO_4^{3-}-P$ contained in livestock wastewater using waste concrete. With small particle size, increased dosage and temperature of water, $PO_4^{3-}-P$ was well removed by waste concrete.$PO_4^{3-}-P$ was removed by adsorption reaction in low pH of the primary phase, but the crystallization reaction predominated for increasing pH with passed time. As a result of adapting the adsorption isotherm equation, $PO_4^{3-}-P$ removal was more affected by the crystallization reaction than the adsorption reaction. In the SEM micrograph, there was no evident change on the waste concreter surface. Particle size was plate-phase before reaction but appeared a dense form to progress in the crystallization reaction.

  • PDF

A Study on the Efficient Applicability of Fenton Oxidation for the Wastewater Containing Non-biodegradable Organics (생물난분해성 유기물질 함유 폐수처리를 위한 Fenton 산화법의 효율적 적용방안에 관한 연구)

  • Jun, Se Jin;Kim, Mi Jeong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.1
    • /
    • pp.76-83
    • /
    • 2000
  • This research is about wastewater containing non-biodegradable TDI(Toluene Diisocyanate) that is treated by the activated carbon adsorption method. In the case of the Fenton oxidation process being applied to the existing process, optimal pH, reaction time, chemical dosing amount, removal rate, and cost were investigated. A pilot plant test was applied after finding optimal conditions with lab experiments. The optimal conditions were pH 3~5(COD removal rate 84~88%) and reaction time 30min~1hr. In higher $H_2O_2$ dosing amount, COD removal rate was a little higher. But there was little difference in the removal rate according to $FeSO_4{\cdot}7H_2O$ dosing amount. Treatment cost was economical in the case of the Fenton oxidation process being operated earlier than activated carbon adsorption system. But chemical dosing point, chemical mixing effect, chemical dosing amount, removal rate, and the cost of facility and others must be considered in practical process.

  • PDF

COD, Ni and P Removal Characteristics for Plating Wastewater According to Different NaOCl Reaction Times in BPC Unit Process (도금폐수처리공정 중 BPC 단위공정 내 NaOCl 반응시간에 따른 도금폐수의 COD, Ni 및 P 제거특성)

  • Jung, Byung-Gil;Lee, Seung-Won;Yun, Kwon-Gam;Choi, Young-Ik
    • Journal of Environmental Science International
    • /
    • v.30 no.1
    • /
    • pp.69-76
    • /
    • 2021
  • The purposes of this study were to evaluate the removal characteristics of COD, Ni, and P and to derive appropriate operating conditions for the plating wastewater according to NaOCl reaction time and pH operating conditions in the BPC unit process during the plating wastewater treatment process. As a results of evaluating the removal characteristics for raw wastewater by each BPC unit process, the removal efficiencies of COD, Ni and P in BPC 1-1 unit process were 72.8%, 99.1%, and 100.0%. Therefore, the proper reaction time of NaOCl was derived as 21.1 minutes. In order to maintain the +800 mV ORP and the reaction time of 20 minutes, the temporary injection and continuous injection of NaOCl in the BPC unit process were 13.7 mL and 18.7 mL, respectively. It was found that the temporary injection method of NaOCl reduced the chemical cost by 36.5% compared to the continuous injection method. Also, Ni showed the highest removal efficiency of 97.8% at pH 10.5. On the other hand, P showed a removal efficiency of 57.4% at pH 10.0.

Effect of Process Parameters of UV Enhanced Gas Phase Cleaning on the Removal of PMMA (Polymethylmethacrylate) from a Si Substrate

  • Kwon, Sung Ku;Kim, Do Hyun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.4
    • /
    • pp.204-207
    • /
    • 2016
  • Experimental study of UV-irradiated O2/H2 gas phase cleaning for PMMA (Polymethylmethacrylate) removal is carried out in a load-locked reactor equipped with a UV lamp and PBN heater. UV enhanced O2/H2 gas phase cleaning removes polymethylmethacrylate (PMMA) better at lower process pressure with higher content of H2. O2 gas compete for UV (184.9 nm) absorption with PMMA producing O3, O(1D) and lower dissociation of PMMA. In our experimental conditions, etching reaction of PMMA at the substrate temperature between 75℃ and 125℃ had activation energy of about 5.86 kcal/mol indicating etching was controlled by surface reaction. Above the 180℃, PMMA removal was governed by a supply of reaction gas rather than by substrate temperature.

Assessment of Micro Organic Pollutants Removal Using Advanced Water Treatment Process and Nanofiltration Process (고도처리공정과 나노여과공정에서의 미량유해물질 제거 평가)

  • Kang, Joon-Seok;Choi, Yang-Hun;Kwon, Soon-Buhm;Yu, Young-Beom
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.8
    • /
    • pp.579-587
    • /
    • 2014
  • Various kinds of micro organic pollutants have frequently been detected from a water system. Therefore, it is considered to be very important part in the drinking water treatment system. And the research about removal process and processing efficiency have been being conducted briskly. In this study, the removal efficiency was evaluated using advanced water treatment process and nanofiltration process. The removal efficiency of nanofiltration process was very different according to physical and chemical characteristics of materials. The molecular weight of cutoff was the most influential factor in the removal efficiency. And when pKa value was higher than pH of raw water or Log Kow value was below 2, the removal efficiency of material was decreased. In case of oxidation reaction, the bigger the molecular weight of material was and the more hydrophobic a material was, the less oxidation reaction occurred. And the removal efficiency was decreased. Most unoxidized materials were removed by absorption. And the more actively oxidation reaction occurred by $H_2O_2$, the more absorption reaction increased.