• 제목/요약/키워드: H-bridge converter

검색결과 161건 처리시간 0.027초

A Fault-Tolerant Control Strategy for Cascaded H-Bridge Multilevel Rectifiers

  • Iman-Eini, Hossein;Farhangi, Shahrokh;Schanen, Jean-Luc;Khakbazan-Fard, Mahboubeh
    • Journal of Power Electronics
    • /
    • 제10권1호
    • /
    • pp.34-42
    • /
    • 2010
  • Reliability is an important issue in cascaded H-bridge converters (CHB converters) because they use a high number of power semiconductors. A faulty power cell in a CHB converter can potentially lead to expensive downtime and great losses on the consumer side. With a fault-tolerant control strategy, operation can continue with the undamaged cells; thus increasing the reliability of the system. In this paper, the operating principles and the control method for a CHB multilevel rectifier are introduced. The influence of various faults on the CHB converter is investigated. The method of fault diagnosis and the bypassing of failed cells are explained. A fault-tolerant protection strategy is proposed to achieve redundancy in the CHB rectifier. The redundant H-bridge concept helps to deal with device failures and to increase system reliability. Simulation results verify the performance of the proposed strategy.

FB DC-DC Converter의 도전손실 저감과 무손실 스너버 회로에 관한 연구 (A Study on Reducing Conduction Losses and Lossless Snubber Circuit of Full-Bridge DC-DC Converter)

  • 라병훈;이현우;권순걸;김준홍;서기영;우정인
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 F
    • /
    • pp.2665-2667
    • /
    • 1999
  • This Paper proposes a new toplogy snubber circuit of Full-Bridge DC-DC Converter for reducing conduction losses and snubber circuit heating loss. Using Partial Resonent Soft Switching Method and Clamping, studying on a new snubber circuit for reducing losses that a snubber circuit heating loss in the secondly diode rectification side, a switching losses in the primary side of IGBT inverter and conduction losses in the high frequency insulation transformer. In this paper, we present FB DC-DC converter included a new lossless snubber circuit, and then be analyzed and simulated.

  • PDF

High Ratio Bidirectional DC-DC Converter with a Synchronous Rectification H-Bridge for Hybrid Energy Sources Electric Vehicles

  • Zhang, Yun;Gao, Yongping;Li, Jing;Sumner, Mark;Wang, Ping;Zhou, Lei
    • Journal of Power Electronics
    • /
    • 제16권6호
    • /
    • pp.2035-2044
    • /
    • 2016
  • In order to match the voltages between high voltage battery stacks and low voltage super-capacitors with a high conversion efficiency in hybrid energy sources electric vehicles (HESEVs), a high ratio bidirectional DC-DC converter with a synchronous rectification H-Bridge is proposed in this paper. The principles of high ratio step-down and step-up operations are analyzed. In terms of the bidirectional characteristic of the H-Bridge, the bidirectional synchronous rectification (SR) operation is presented without any extra hardware. Then the SR power switches can achieve zero voltage switching (ZVS) turn-on and turn-off during dead time, and the power conversion efficiency is improved compared to that of the diode rectification (DR) operation, as well as the utilization of power switches. Experimental results show that the proposed converter can operate bidirectionally in the wide ratio range of 3~10, when the low voltage continuously varies between 15V and 50V. The maximum efficiencies are 94.1% in the Buck mode, and 93.6% in the Boost mode. In addition, the corresponding largest efficiency variations between SR and DR operations are 4.8% and 3.4%. This converter is suitable for use as a power interface between the battery stacks and super-capacitors in HESEVs.

Buck-boost 컨버터와 Flyback 컨버터의 결합을 이용한 Cascaded H-bridge 멀티레벨인버터의 단일 입력전원 구동 (Single input source driving of Cascaded H-bridge multilevel inverter by integrating buck-boost and flyback converter)

  • 권철순;강필순
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1163-1164
    • /
    • 2011
  • Cascaded H-bridge 멀티레벨인버터의 구동을 위해서는 독립된 입력전압원의 확보가 필요하다. 본 논문에서는 이러한 Cascaded H-bridge 멀티레벨 인버터의 구조적 제약을 극복하기 위해 Buck-boost 컨버터와 Flyback 컨버터의 결합을 이용한 단일입력전원 구동 방법을 제안한다. 제안된 회로의 이론적 분석을 수행하고 시뮬레이션을 통하여 타당성을 검증한다.

  • PDF

하프브리지 DC-DC 컨버터의 순시추종제어 (Instantaneous Following Control of Half-Bridge DC-DC Converter)

  • 라병훈;이현우;김상돈;김광태
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(1)
    • /
    • pp.54-57
    • /
    • 2003
  • A new non linear, mean value, instantaneous following control technique to design half bridge converter is proposed in witch control principle uses characteristic that reset time of analog integrator is inverse proportion In input voltage. It is Important characteristic that compensation and follow-up control time are same with switching frequency. Is completed in one cycle that base control frequency. Have excellence characteristic that follow in order instruction value exactly stationary state as well as transient state. Half bridge converter that apply this control principle can know that have stabilize and excellence characteristic. This technique is verified through an experiment, and know that experiment result and theory agree well.

  • PDF

NPC와 B-Bridge 컨버터의 부스트 벡터와 커패시터전압의 해석 (Analysis of Capacitor Voltage and Boost Vector in Neutral-Point-Clamped and H-Bridge Converter)

  • 김정균;김태진;강대욱;현동석
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2002년도 전력전자학술대회 논문집
    • /
    • pp.489-493
    • /
    • 2002
  • This paper discover another boost vectors in high modulation index In steady states, modulation index of converter operation is normally $0.7\~0.8[p.u]$. Even though zero vectors are not imposed, DC-Link voltage is constant because 3-level boost convert has another boost vectors. and this paper proposes the analysis and the comparison for NPC and H-Bridge converter. It proposed the calculation method for the voltage ripple and charging current of each capacitor and deals with voltage balance problems of each link capacitor they are associated with the switching state, the position of reference voltage vector. Simulation and analysis are used in order to prove validity of the proposed methods.

  • PDF

Fault-Tolerant Control of Cascaded H-Bridge Converters Using Double Zero-Sequence Voltage Injection and DC Voltage Optimization

  • Ji, Zhendong;Zhao, Jianfeng;Sun, Yichao;Yao, Xiaojun;Zhu, Zean
    • Journal of Power Electronics
    • /
    • 제14권5호
    • /
    • pp.946-956
    • /
    • 2014
  • Cascaded H-Bridge (CHB) converters can be directly connected to medium-voltage grids without using transformers and they possess the advantages of large capacity and low harmonics. They are significant tools for providing grid connections in large-capacity renewable energy systems. However, the reliability of a grid-connected CHB converter can be seriously influenced by the number of power switching devices that exist in the structure. This paper proposes a fault-tolerant control strategy based on double zero-sequence voltage injection and DC voltage optimization to improve the reliability of star-connected CHB converters after one or more power units have been bypassed. By injecting double zero-sequence voltages into each phase cluster, the DC voltages of the healthy units can be rapidly balanced after the faulty units are bypassed. In addition, optimizing the DC voltage increases the number of faulty units that can be tolerated and improves the reliability of the converter. Simulations and experimental results are shown for a seven-level three-phase CHB converter to validate the efficiency and feasibility of this strategy.

A Novel DC Bus Voltage Balancing of Cascaded H-Bridge Converters in D-SSSC Application

  • Saradarzadeh, Mehdi;Farhangi, Shahrokh;Schanen, Jean-Luc;Frey, David;Jeannin, Pierre-Olivier
    • Journal of Power Electronics
    • /
    • 제12권4호
    • /
    • pp.567-577
    • /
    • 2012
  • This paper introduces a new scheme to balance the DC bus voltages of a cascaded H-bridge converter which is used as a Distribution Static Synchronous Series Compensator (D-SSSC) in electrical distribution network. The aim of D-SSSC is to control the power flow between two feeders from different substations. As a result of different cell losses and capacitors tolerance the cells DC bus voltage can deviate from their reference values. In the proposed scheme, by individually modifying the reference PWM signal for each cell, an effective balancing procedure is derived. The new balancing procedure needs only the line current sign and is independent of the main control strategy, which controls the total DC bus voltages of cascaded H-bridge. The effect of modulation index variation on the capacitor voltage is analytically derived for the proposed strategy. The proposed method takes advantages of phase shift carrier based modulation and can be applied for a cascaded H-bridge with any number of cells. Also the system is immune to loss of one cell and the presented procedure can keep balancing between the remaining cells. Simulation studies and experimental results validate the effectiveness of the proposed method in the balancing of DC bus voltages.

하프 브리지 컨버터의 비대칭 제어 공진 특성 분석 (Analysis of Resonant Characteristics in Asymmetrical Control Half Bridge Converter)

  • 안중록;권명일;장도현
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(1)
    • /
    • pp.58-61
    • /
    • 2003
  • In this paper, resonant Characteristics of the soft switched asymmetrical half bridge converter is analysis. The operation principle for proposed converter is explained in steady state and its circuit is analyzed by means of equivalent circuit. Experimental results carried out on a system prototype are included in this paper.

  • PDF

입력역률 제어형 인버터 용접기 특성해석에 관한 연구 (A Study on Characteristics of input current controlled inverter arc welder)

  • 송성학;채영민;우동학;최규하;장도현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 A
    • /
    • pp.324-327
    • /
    • 1996
  • This paper presents the adoption of PWM converter to enhance input power factor in inverter arc welder. By using PWM converter in inverter arc welder, the disadvantages of bridge diode converter such as low input power factor is improved, new NCT(Noise Cut Transformer) is designed to reduce noise which has harmful effect in switching component, half bridge PWM inverter is adopted to reduce cost in inverter arc welder.

  • PDF