• Title/Summary/Keyword: H-bonds

Search Result 492, Processing Time 0.025 seconds

Changes of Surface Properties by Plasma Treatment on the Surface of Semiconductive Silicone Rubber (반도전성 실리콘 고무의 플라즈마 처리에 따른 표면의 특성변화)

  • Lee, Ki-Taek;Huh, Chang-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.8
    • /
    • pp.696-701
    • /
    • 2005
  • This paper was investigated the changes of surface properties of high-temperature-vulcanized (HTV) semiconductive silicone rubber due to oxygen plasma discharge. The modifications produced on the silicone rubber surface by oxygen plasma were accessed using Fourier transform infrared spectroscopy(FTIR), X-ray photoelectron spectroscopy(XPS), contact angle and Surface Roughness Tester. The results of the chemical analysis Showed that C-H bonds were broken due to plasma discharge and Silica-like bonds (SiOx, x=$3\~4$) increased. It is thought that the above changes lead to the increase of surface energy of high-temperature-vulcanized (HTV) semiconductive silicone rubber also, Surface roughness was increased with cleavage of side-chains and oxidation process, it confirmed change as the SEM. The micromorphology of surface and hydrophobicity due to plasma discharge based on our results were discussed.

In-Situ Fluorine Passivation by Excimer Laser Annealing

  • Jung, Sang-Hoon;Kim, Cheon-Hong;Jeon, Jae-Hong;Yoo, Juhn-Suk;Han, Min-Koo
    • Journal of Information Display
    • /
    • v.1 no.1
    • /
    • pp.25-28
    • /
    • 2000
  • We propose a new in-situ fluorine passivation of poly-Si TFTs using excimer laser annealing to reduce the trap state density and improve reliability significantly. To investigate the effect of an in-situ fluorine passivation, we have fabricated fluorine-passivated p-channel poly-Si TFTs and examined their electrical characteristics and stability. A new in-situ fluorine passivation brought about an improvement in electrical characteristic. Such improvement is due to the formation of stronger Si-F bonds than Si-H bonds in poly-Si channel and $SiO_2$/Poly-Si interface.

  • PDF

Application of a New Method to Reproduce the Enthalpies of Transfer of NaI from Water to Aqueous Methanol, Ethanol and iPrOH Solvent Systems at 298 K

  • Rezaej Behbehani, G.
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.2
    • /
    • pp.238-240
    • /
    • 2005
  • The enthalpies of transfer, ${\Delta}H_t{\Theta}$, of NaI from water to aqueous methanol, ethanol and isopropanol, iPrOH, systems are reported. These data have been analysed in terms of the new solvation theory. These data are considered in terms of the new developed solvation theory including variable ($\alpha$n + $\beta$N), the net effect of the solute on the solvent-solvent bonding, is positive if there is a net breaking or weakening of solvent-solvent bonds. The solvation parameters recovered from the analyses indicate that the net affect of NaI on solvent structure is a breaking of solvent-solvent bonds and that NaI is preferentially solvated by water in all aqueous alcohol systems considered. ($\alpha$n + $\beta$N) values increase with increasing in the size of the alcohol alkyl residue from methanol to iPrOH.

Effect of Polyisocyanate Hardener on Waterborne Polyurethane Adhesive Containing Different Amounts of Ionic Groups

  • Rahman Mohammad Mizanur;Kim Han-Do
    • Macromolecular Research
    • /
    • v.14 no.6
    • /
    • pp.634-639
    • /
    • 2006
  • Waterborne polyurethane (WBPU) adhesive with varying amounts of dimethylol propionic acid (DMPA) was synthesized by prepolymer process and blended with polyisocyanate hardener. The mean particle size of the WBPU dispersion decreased with increasing DMPA content. $^1H$ NMR spectroscopy confirmed the formation of allophanate bonds and biuret bonds due to the reaction of hardener NCO with urethane/urea groups. The optimum NCO content with the greatest adhesive strength was dependent on the total content of urethane/urea groups in the WBPU molecules. The optimum NCO content increased with increasing number of urethane groups (DMPA content). The adhesion strength of WBPU adhesives was maximized at a molar ratio of hardener NCO to urethane/urea of about 0.28.

A Study of the Changes of Surface Properties on Semiconductive-Insulating of Silicone Rubber by Oxygen Plasma Treatment (산소 플라즈마 처리에 의한 반도전성 실리콘 고무 표면의 특성변화)

  • Lee, Ki-Taek;Hwang, Sun-Mook;Hong, Joo-Il;Huh, Chang-Su
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05b
    • /
    • pp.25-28
    • /
    • 2005
  • This paper was investigated the changes of surface properties of high-temperature-vulcanized(HTV) semiconductive silicone rubber due to oxygen plasma discharge. The modifications produced on the silicone surface by oxygen plasma were accessed using x-ray photoelectron spectroscopy(XPS), contact angle and Scanning Electron Microscope(SEM). The results of the chemical analysis showed that C-H bonds were broken due to plasma discharge and Silica-like bonds (SiOx. x=3~4) increased. It is thought that the above changes lead to the increase of surface energy of high-temperature-vulcanized(HTV) semiconductive silicone rubber. The micromorphology of surface and hydrophobicity due to plasma discharge based on our results were discussed.

  • PDF

Electrical Instabilities of Mesoporous Silica Thin Films

  • Dung, Mai Xuan;Jeong, Hyun-Dam
    • Journal of Integrative Natural Science
    • /
    • v.3 no.4
    • /
    • pp.219-225
    • /
    • 2010
  • On the surface of mesoporous silica thin films (MSTF) which were fabricated by sol-gel approach there are existences of water and three different silanol types including chained, germinal and isolated silanol. Their amounts changes as a function of aging time of used sol solution, as confirmed by FT-IR. The adsorbed water generates ionic carriers such as H+ and OH- and passivates the Si dangling bonds at the interface of silicon wafer-MSTF. The ionic carriers can not only transport across the thickness of thin film to enhance the leakage current but also diffuse toward the silicon wafer-MSTF interface to depassivate Si dangling bonds. On the other hand, chained silanols or germinal silanols promote the moisture adsorption of MSTF and tend to form strongly hydrogen bonded systems with adsorbed water molecules resulting in very high dielectric constant. Isolated silanol, on the contrary, affects less on electrical properties of thin film.

Chemical structure evolution of low dielectric constant SiOCH films during plasma enhanced plasma chemical vapor deposition and post-annealing procedures

  • Xu, Jun;Choi, Chi-Kyu
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2002.11a
    • /
    • pp.34-46
    • /
    • 2002
  • Si-O-C-H films with a low dielectric constant were deposited on a p-type Si(100) substrate using a mixture gases of the bis-trimethylsilyl-methane (BTMSM) and oxygen by an inductively coupled plasma chemical vapor deposition (ICPCYD). High density plasma of about $~10^{12}\textrm{cm}^{-3}$ is obtained at low pressure (<400 mTorr) with rf power of about 300W in ICPCVD where the BTMSM and $O_2$ gases are fully dissociated. Fourier transform infrared (FTIR) spectra and X-ray photoelectron spectroscopy (XPS) spectra show that the film has $Si-CH_3$ and OH-related bonds. The void within films is formed due to $Si-CH_3$ and OH-related bonds after annealing at $500^{\circ}C$ for the as-deposition samples. The lowest relative dielectric constant of annealed film at $500^{\circ}C$ is about 2.1.

  • PDF

Bonding of Electron Deficient Thallium-Metal Cluster Compound

  • Kang, Sung-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.2
    • /
    • pp.191-195
    • /
    • 1993
  • Molecular orbital calculations at the extended Huckel level have been carried out for an electron deficient cluster, $Tl_3(FeL_3)_2{(FeL_4)_3}^{-3}$, where L=CO or $H^-$. The LUMO, $2a_2$", is destabilized by the secondary interaction of the LUMO with $1a_2$" on $(FeL_3)_2$ fragment. This is one of six skeletal bonding orbitals which are associated with $Tl-FeL_3$ bonds. Overlap population analysis has been applied to account for two kinds of Tl-Fe bonds. Replacement of the terminal $C_{3v}$, $FeL_4$, by the $C_{2v}$, $FeL_4$ units in cluster results in slight energy stabilization of the cluster.

Geometries and Relative Stabilities of AlN Four-Membered-Ring Compound Isomers: Ab initio Study

  • Park, Sung-Soo;Lee, Kee-Hag;Suh, Young-Sun;Lee, Chang-Hoon;Luthi, Hans P.
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.241-244
    • /
    • 2002
  • Using ab initio method, we have studied the structural stabilities, the electronic structures and properties between the two isomers with $C_{2h}$ and $C_{2v}$ symmetry of AlN four-membered-ring single precursors $[Me_2AlNHR]_2$ (R = Me, $^iPr$, and $^iBu$). In the viewpoint of bond lengths in optimized structures, the N-C bonds are considerably affected by the change of the R groups bonded to nitrogen, but the bonding characters of the Al-N and Al-C bonds are little affected. Also the structural stabilities between the two isomers with $C_{2h}$ and $C_{2v}$ symmetry by using Hartree-Fock (HF) and the second order Moeller-Pleset (MP2) calculations agree well with the experimental results for the relative stability of bis(dimethyl- m-isopropylamido-aluminum) (BDPA) and bis(dimethyl- m-t-butylamido-aluminum) (BDBA), while the semiempirical AM1 and PM3 calculations for BDPA were reverse. Thus, our results may aid in designing an optimum precursor for a given process by explaining the experimental results through the elimination of the R groups bonded to nitrogen.

Effects of Commercial Nitrilase Hydrolysis on Acrylic Fabrics

  • Kim, Hye Rim;Seo, Hye Young
    • Fashion & Textile Research Journal
    • /
    • v.18 no.6
    • /
    • pp.889-896
    • /
    • 2016
  • This study aims to evaluate the hydrolytic activity of a commercial nitrilase and optimize nitrilase treatment conditions to apply eco-friendly finishing on acrylic fabrics. To assess the possibility of hydrolyzing nitrile bonds in acrylic fabric using a commercial nitrilase, the amounts of hydrolysis products, ammonia and carboxylate ions, were measured. The treatment conditions were optimized via the amount of ammonia. The formation of carboxylate ions on the fabric surface was detected by X-ray photoelectron spectroscopy and wettability measurements. After nitrilase treatment, ammonia was detected in the treatment liquid; thus, nitrilase hydrolyzed the nitrile bonds in acrylic woven fabric. The largest amount of ammonia was released into the treatment liquid under the following conditions: pH 8.0, $40^{\circ}C$, and a treatment time of 5 h. The formation of carboxylate ions on the acrylic woven fabric surface by nitrilase hydrolysis was proven by the increased O1s content measuring of XPS analysis. From comparison of the results of nitrilase and alkaline hydrolysis, the white index and strength of the alkali-hydrolyzed acrylic fabric decreased, whereas those of the nitrilase-hydrolyzed samples were maintained. The nitrilase hydrolysis improved the sensitivity of acrylic fabrics to basic dye similarly to alkaline hydrolysis without the drawbacks of yellowing and decreased strength caused by alkaline hydrolysis.