• Title/Summary/Keyword: H-bonding

Search Result 895, Processing Time 0.028 seconds

Physicochemical Characteristics Study on Wheat Starch Adhesive - Based on Wheat Starch Adhesive fermenting period less than two years- (소맥전분 풀의 이화학적 특성 연구 - 수침기간이 2년 이하인 풀을 중심으로-)

  • Chung, Yong-Jae;Kim, Min-Jeong;Nam, Seo-Jin;Jeong, Seon-Hye
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.2
    • /
    • pp.35-41
    • /
    • 2012
  • In this study, wheat starch adhesive was investigated the shape and structure of starch, the difference in characteristics such as chemical composition according to the fermenting period of 2 years or less. The fermenting period of wheat starch adhesive is 1 month, 2months, 4 months,6 months, 1 year, 2years old. The wheat starch adhesives were investigated total sugar contents, protein contents, properties of gelatinization, pH, the bonding strength and also observed the surface of starch,. As a result, the longer the fermenting period, the increasing in total sugar contents and decreasing in protein contents. The particle shape and surface were similar regardless of the period. In addition, properties of gelatinization according to the fermenting period also could not see the difference. In pH of the adhesive, the longer the fermenting period, the near to neutral. The adhesive was high bonding strength in 4 months, but appeared a tendency to decrease from 6 months. The damage assessment through the UV degradation in regard to the papers applied the adhesive was accomplished. Color difference was no change except 1 month. The 4 months and 6 months' pH was each 5.0, 5.2. But it was near to neutral that the 12 months and 24 months' pH was each 5.7, 5.9.

Study of Failure Mechanisms of Wafer Level Vacuum Packaging for MEMG Gyroscope Sensor (웨이퍼 레벨 진공 패키징된 MEMS 자이로스코프 센서의 파괴 인자에 관한 연구)

  • 좌성훈;김운배;최민석;김종석;송기무
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.3
    • /
    • pp.57-65
    • /
    • 2003
  • In this study, we carry out reliability tests and investigate the failure mechanisms of the anodically bonded wafer level vacuum packaging (WLVP) MEMS gyroscope sensor. There are three failure mechanisms of WLVP: leakage, permeation and out-gassing. The leakage is caused by small dimension of the leak channel through the bonding interface and internal defects. The larger bonding width and the use of single crystalline silicon can reduce the leak rate. Silicon and glass wafer itself generates a large amount of outgassing including $H_2O$, $C_3H_5$, $CO_2$, and organic gases. Epi-poly wafer generates 10 times larger amount of outgassing than SOI wafer. The sandblasting process in the glass increases outgassing substantially. Outgassing can be minimized by pre-baking of the wafer in the vacuum oven before bonding process. An optimum pre-baking temperature of the wafers would be between $400^{\circ}C$ and $500^{\circ}C$.

  • PDF

Formation of Silicon Diaphragm Using Silicon-wafer Direct Bonding / Electrochemical Etch-stopping and Its Application to Silicon Pressure Sensor Fabrication (실리콘 직접 접합 / 전기화학적 식각정지를 이용한 실리콘 다이아프램의 형성과 실리콘 압력센서 제조에의 응용)

  • Ju, B.K.;Ha, B.J.;Kim, K.S.;Song, M.H.;Kim, S.H.;Kim, C.J.;Tchah, K.H.;Oh, M.H.
    • Journal of Sensor Science and Technology
    • /
    • v.3 no.3
    • /
    • pp.45-53
    • /
    • 1994
  • A new type of Si diaphragm was fabricated using Si-wafer direct bonding and two-step electrochemical etch-stopping methods. Using the new diaphragm structure in mechanical sensors, more precise control of cavity depth and diaphragm thickness was achievable. Also, the propagation of the stress, which was generated near the bonding interface, to the surface can be avoided. Finally, a piezoresistive-type Si pressure sensor was fabricated utilizing the diaphragm and a digital pressure gauge, which can display units of pressure, was realized.

  • PDF

Integration of an Optical Waveguide Isolator by Wafer Direct Bonding

  • Roh J. W.;Yang J. S.;Ok S. H.;Choi U. K.;Lee S.;Lee W. Y.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2004.12a
    • /
    • pp.175-176
    • /
    • 2004
  • An integrated waveguide optical isolator by wafer direct bonding has been studied. The isolation ratio was found to be 2.9dB in our device. We found that wafer direct bonding between the InP and GGG is effective for the integration of a waveguide optical isolator.

  • PDF

Facile Modulation of Electrical Properties on Al doped ZnO by Hydrogen Peroxide Immersion Process at Room Temperature

  • Park, Hyun-Woo;Chung, Kwun-Bum
    • Applied Science and Convergence Technology
    • /
    • v.26 no.3
    • /
    • pp.43-46
    • /
    • 2017
  • Aluminum-doped ZnO (AZO) thin films were deposited by atomic layer deposition (ALD) with respect to the Al doping concentrations. In order to explain the chemical stability and electrical properties of the AZO thin films after hydrogen peroxide ($H_2O_2$) solution immersion treatment at room temperature, we investigated correlations between the electrical resistivity and the electronic structure, such as chemical bonding state, conduction band, band edge state below conduction band, and band alignment. Al-doped at ~ 10 at % showed not only a dramatic improvement of the electrical resistivity but also excellent chemical stability, both of which are strongly associated with changes of chemical bonding states and band edge states below the conduction band.

Observation of Oxide Film Formed at Si-Si Bonding Interface in SFB Process (SFB 공정시 Si-Si 집합 계면에 형성되는 산화막의 관찰)

  • 주병권;오명환;차균현
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.1
    • /
    • pp.41-47
    • /
    • 1992
  • In SFB Process, after 110$0^{\circ}C$ annealing in wet OS12T(95$^{\circ}C$ HS12TO bubbling) atmosphere, the existence of the interfacial oxide film in micro-gap at Si-Si bonding interface was identified. The angle lapping/staining and SEM morphologies of bonding interface showed that the growing behavior of interfacial oxide made a contribution to eliminate the micro-gaps having a width of 200-300$\AA$. In case of the diodes composed of p-n wafer pairs made by SFB processes, the annealed one in wet OS12T atmosphere exhibited a dielectric breakdown phenomena of interfacial oxide at 37-40 volts d.c.

  • PDF

High Pressure Effect of Vibration in a Hydrogen Bonding Crystal :$NH_4I$ (수소결합을 가진 결정내의 진동의 고압효과 : $NH_4I$)

  • Jeon Seung-Joon
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.5
    • /
    • pp.627-631
    • /
    • 1992
  • A simple one dimensional model was proposed to describe a hydrogen bonding in crystals, which was based on the Lippincott's empirical potential. The model was used to calculate internal stretching vibrational frequencies of $NH_4I$ crystal at high pressures. The calculated results were in agreement with Raman experimental results qualitatively. At relatively lower high pressures, as pressure increases internal stretching vibrational frequencies shift lower due to increase of the hydrogen bonding effect. At higher pressures, the frequencies shift higher due to the repulsive contribution of interatomic potential induced by the reduction of interatomic distance as pressure increases.

  • PDF

Basicity of Urea: Near-Infrared Spectroscopic and Theoretical Studies on the Hydrogen Bonding Ability of TMU and DMDPU

  • 이호진;최영상;박정희;윤창주
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.1
    • /
    • pp.110-114
    • /
    • 1998
  • The hydrogen-bonding interactions between thioacetamide (TA) and urea derivatives such as tetramethylurea (TMU) and dimethyldiphenylurea (DMDPU) have been studied using near-infrared absorption spectroscopy. Thermodynamic parameters for the interactions between TA and urea derivatives were determined by analyzing the $v^{as}_{N-H}$+Amide Ⅱ combination band of TA at 1970 nm. The ΔH° values, indicating the intrinsic strength of hydrogen bonding, are - 23.0 kJ/mole and - 19.8 kJ/mol for TMU and DMDPU, respectively. This is well explained by the inductive effects of substituents. Ab initio molecular orbital calculations for the proton affinity of TMU, N,N-dimethylformamide (DMF), and N,N-dimethylacetamide (DMA) in gas phase have been carried out at HF/3-21G ad HF/6-31G(d) levels, showing that the proton affinity of TMU is larger than that of DMA, which agrees well the experimental results.

The Near Infrared Spectroscopic Studies of the Hydrogen Bonding Between Thioacetamide and Azines in Nonaqueous Solutions

  • 이상현;박정희;윤창주;최영상
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.9
    • /
    • pp.831-834
    • /
    • 1995
  • The nature of hydrogen bonding between thioacetamide and azines has been thoroughly investigated using near IR absorption spectroscopy. The νN-H + amide II combination band in thioacetamide (TA) has been analyzed to determine the thermodynamic constants for the formation of hydrogen bonded 1:1 TA:azine complexes in CCl4 and CHCl3 solutions. The relative stabilities of TA-azine complexes (pyridine->1,2-diazine->1,3-diazine->1,4-diazine-TA) are in good agreement with the relative proton affinities of azines in the gas phase. The results serve as a basis for analyzing the factors which influence the hydrogen bonding formation of TA in nonaqueous solutions.