• Title/Summary/Keyword: H-bonding

Search Result 897, Processing Time 0.029 seconds

Aluminum Wire Bonding by Longitudinal Vibration of Ultrasonic Transducer (초음파 트랜스듀서의 종진동을 이용한 알루미늄 와이어 용접)

  • Lee, G.B.;Kim, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.11
    • /
    • pp.38-45
    • /
    • 1996
  • In recent years, ultrasonic has been widely applied in measurement and industrial fields and its application range has been expanded as a result of continuous research and development. Wire Bonding Machine, an instrument fabricating semi-conductor, makes use of ultrasonic bonding method. Specially, the method utilizes the longitudinal vibration of ultrasonic transducer composed of piezoelectric vibrator and horn. This work investigates the design conditions affecting the dynamic characteristics through the theretical and experimental analysis. It conducts separately the system identification of piezoelectric vibrator in time domain and the modal analysis of horn in frequency domain. The integrated modeling is conducted via a combbination of dynamic identification of piezoelectric vibrator and theroretical analysis of horn. Then comparison is made for theroretical and experimental results of the dynamic characteristics of the ultrasonic transducer comprised of piezoelectric vibrator and horn. Form the results of the comparison we develop the design technique of ultrasonic transducer using dynamic characteristics analysis and propose the possibility of ultrasonic bonding considering the optimal conditions for the longitudinal vibration of ultrasonic transducer and other conditions.

  • PDF

Variations of Micro-Structures and Mechanical Properties of Ti/STS321L Joint Using Brazing Method (브레이징을 이용한 Ti/STS321L 접합체의 미세조직과 기계적 특성의 변화)

  • 구자명;정우주;한범석;권상철;정승부
    • Journal of Welding and Joining
    • /
    • v.20 no.6
    • /
    • pp.106-106
    • /
    • 2002
  • This study investigated variations of micro-structures and mechanical properties of Ti / STS321L joint with various bonding temperature and time using brazing method. According to increasing bonding temperature and time, it was observed that the thickness of their reaction layer increased due So increasing diffusion rate and time. From the EPMA results, Ti diffused to the STS321L substrate according to increasing bending time to 30min. Hardness of bonded interface increased with increasing bonding temperature and time due to increasing their oxides and intermetallic compounds. XRD data indicated that Ag, Ag-Ti intermetallic compounds, TiAg and Ti₃Ag and titanium oxide, TiO₂were formed in interface. In tensile test, it was found that the tensile strength had a maximum value at the bonding temperature of 900℃ and time of 5min, and tensile strength decreased over bonding time of 5min. The critical thickness of intermetallic compounds was observed to about 30㎛, because of brittleness from their excessive intermetallic compounds and titanium oxide, and weakness from void.

Poly(2-ethyl-2-oxazoline)/poly(acrylic acid) 계의 수소결합 특성 및 이용

  • Kim, Jin-Hui;Jang, U-Jin;Gu, Yun-Mo
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.644-647
    • /
    • 2000
  • The properties of hydrogen bonding between poly(2-ethyl-2-oxazoline)[PEOx] and poly(acrylic acid)[PAA] were investigated. PEOx and PAA formed stable complex and precipitated due to hydrogen bonding between hydrogen of PAA and oxygen of PEOx in acidic condition(below pH 4.3). Optimum reaction ratio of PEOx and PAA was determined as mass ratio of 1:1.5 for applications in aqueous two phase system. The mixtures of the polymers formed aqueous two phase system with dextran solution after the breakage of hydrogen bondings. This properties can be used for the recovery of valuable products.

  • PDF

A Study on DLC Hard Coating in Ocular Lens(CR-39) (안경렌즈(CR-39)에의 DLC Hard 코팅에 관한 연구)

  • Lee, Won Jin
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.6 no.1
    • /
    • pp.87-91
    • /
    • 2001
  • The a-C:H films have been grown on the glass substrate by PECVD method, where plasma was generated with a 60 Hz line power source. The carbonization is checked from peak intensities of D($sp^3$) and G($sp^2$) peaks in Raman spectra and is analyzed using the Gaussian convolution method of spectrum. Both the bonding strength of C-H and the ratio of $sp^3$ to $sp^2$ in bonding are found to be slightly dependent of partial pressure of $C_2H_2$.

  • PDF

Synthesis and Structural Analysis of the Diaquabis(ethylenediamine)nickel(II) Bis(p-toluenesulfonate) Monohydrate (Diaquabis(ethylenediamine)nickel(II) Bis(p-toluenesulfonate) Monohydrate 층상 화합물의 합성과 구조 분석)

  • Kim, Chong-Hyeak;Lee, Sueg-Geun
    • Analytical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.317-320
    • /
    • 2002
  • The layer structure of the title compound, $[Ni(en)_2(H_2O)_2](CH_3C_6H_4SO_3)_2(H_2O)$ (en = ethylenediamine), consists of discrete cations, anions, and solvate water molecules linked by a hydrogen bonding network. The central Ni atom of the cation layer has a slightly distorted octahedral coordination geometry with the ethylenediamine ligands functioning as a N,N'-bidentate and the water ligands bonding through oxygen in a trans arrangement. The p-toluenesulfonate of the anion layer has an alternate sulfonate group directed toward opposite side of the cation layer. This layer structure is stabilized by a hydrogen bond involving the O atoms of the sulfonate, the water ligand, solvate water molecule, and the N atoms of the ethylenediamine.

Electronic and Bonding Properties of BaGaGeH: Hydrogen-induced Metal-insulator Transition from the AlB2-type BaGaGe Precursor

  • Kang, Dae-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.153-158
    • /
    • 2012
  • The hydrogenation of $AlB_2$-type BaGaGe exhibits a metal to insulator (MI) transition, inducing a puckering distortion of the original hexagonal [GaGe] layers. We investigate the electronic structure changes associated with the hydrogen-induced MI transition, using extended H$\ddot{u}$ckel tight-binding band calculations. The results indicate that hydrogen incorporation in the precursor BaGaGe is characterized by an antibonding interaction of $\pi$ on GaGe with hydrogen 1s and the second-order mixing of the singly occupied antibonding $\pi^*$ orbital into it, through Ga-H bond formation. As a result, the fully occupied bonding $\pi$ band in BaGaGe changes to a weakly dispersive band with Ge pz (lone pair) character in the hydride, which becomes located just below the Fermi level. The Ga-Ge bonds within a layered polyanion are slightly weakened by hydrogen incorporation. A rationale for this is given.

Predicting Mechanical Response of Multilayered Aluminum Sheet Using Finite Element Analysis (유한요소해석 연계 알루미늄 다층판재의 기계적 거동 예측)

  • Sung, J.Y.;Kim, M.H.;Bong, H.J.;Lee, K.S.;Kim, M.J.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.29 no.6
    • /
    • pp.347-355
    • /
    • 2020
  • The mechanical responses of multilayered aluminum sheet fabricated by roll bonding, i.e., A1050/A3004 (65% A1050, 35% A3004 by thickness), were investigated via combined experiment and finite element (FE) analysis. The mechanical properties were measured using uniaxial tensile tests in various loading directions for the multilayered sheet. The corresponding tests for individual layers were also conducted. The testing samples were prepared by wire electro discharge machining (EDM). Stress-strain curves and Lankford coefficients of the multilayered sheet were then predicted by FE simulations. The measured mechanical properties of the individual layers were utilized as inputs for the simulation. Two yield functions, i.e., isotropic von-Mises and anisotropic non-quadratic Hill1948, were employed. Predicted results were compared with the experimental data and further discussed.

Chiral Recognition in Gas chromatographic Resolution of Amino -$^1H\;and^{13}C$ Nuclear magnetic resonance studies of hydrogen bonding in dinmide chiral stationary phases-

  • Park, Man-Ki;Yang, Jeong-Sun;Sohn, Dong-Hwan;Lee, Mi-Young
    • Archives of Pharmacal Research
    • /
    • v.12 no.1
    • /
    • pp.58-61
    • /
    • 1989
  • Studies of selectivity of hydrogen bond formation in chiral solute-solvent systems have been performed by $^1H\;and\;^{13}C$ nuclear magnetic resonance techniques. These data are correlated with the results of gas chromatographic investigations of the same systems. Interactions between the optically active solvent(N-(N-benzoyl-L-amino acid)-anilide) and optically active solute (N-trifluoroacetyl -L-alanyl isopropyl ester) were examined. NMR evidence indicated that hydrogen bonding interaction occurred between two N-H portion and on peptidyl carbonyl portion in stationary phase and solute molecule on three points. The association constants of solvent-solute interaction were calculated and the structure of the diastereomeric association complex between N-(N-benzoyl-L-valyl)-anilide and N-TFA-L-alanyl isopropyl ester was proposed.

  • PDF