• Title/Summary/Keyword: H-Si(100)

Search Result 879, Processing Time 0.03 seconds

Growth Mode of Tungsten Thin Film by Using Si$H_4$ Reduction of W$F_6$ in LPCVD System (저압 화학 기상 증착 조건에서 Si$H_4$, W$F_6$ 환원 반응에 의한 텅스텐 박막의 성장 양식)

  • Kim, Sung Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.3 no.2
    • /
    • pp.107-116
    • /
    • 1993
  • Tungsten thin film was deposited on Si( 100) substrate by either Si substrate reduction of W$F_6$( case 1) or Si$H_4$ reduction of W$F_6$( case 2) in LPCVD system The morphology and properties of deposited films for both cases were examined. The crystal structure for both cases was determined to be bec (body centered cubic). The amount of tungsten and the grain size in thin films were increased as the film grows. From the experimental results and theoretical considerations, it can be understood that the tungsten thin film grows by the volmer-weber growth mode, that is, island growth. The detailed tungsten thin film growth mode is presented. It was also found that the initial polycrystal structure of tungsten thin film developed into single crystal structure as the film grew in thickness.

  • PDF

Desulfurization Ability of CuO-Fe2O3 Sorbents with Respect to the Calcination Temperature by GC/microreactor (GC/microreactor를 이용한 소성온도에 따른 CuO-Fe2O3 흡수제의 탈황성능)

  • Lee, Hyo-Song;Kim, Jin-Yong;Kim, Jeong-Soo;Rhee, Young Woo
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.140-145
    • /
    • 2005
  • The desulfurization abilities using GC/microreactor have been examined for $CuO-Fe_2O_3$ sorbents with respect to calcination temperatures of 700, 900 and $1,100^{\circ}C$. CuO was used as a main active component, $Fe_2O_3$ was used as an additive one and 25 wt% $SiO_2$ was used as a support. The desulfurization reaction temperature was $500^{\circ}C$ and the regeneration reaction temperature was $700^{\circ}C$. From the XRD results, the $CuFeO_2$ compound has been observed for the fresh sorbent calcined at $1,100^{\circ}C$ and the $CuFeS_2$ compound for the reacted sorbent calcined at $1,100^{\circ}C$. By the BET results, however any significant differences among sorbents calcined at the three different temperatures of 700, 900 and $1,100^{\circ}C$ haven't been observed. Especially CFS1 (CuO : $Fe_2O_3$ : $SiO_2$=67.5 wt% : 7.5 wt% : 25 wt%) sorbent calcined at $1,100^{\circ}C$ maintained about 10 g sulfur/100 g sorbent for 100 cycles by the cyclic test.

Oxidation Behavior of Oxide Particle Spray-deposited Mo-Si-B Alloys

  • Park, J.S.;Kim, J.M.;Kim, H.Y.;Perepezko, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.20 no.6
    • /
    • pp.299-305
    • /
    • 2007
  • The effect of spray deposition of oxide particles on oxidation behaviors of as-cast Mo-14.2Si-9.6B (at%) alloys at $1200^{\circ}C$ up to for 100 hrs has been investigated. Various oxide powders are utilized to make coatings by spray deposition, including $SiO_2,\;TiO_2,\;ZrO_2,\;HfO_2$ and $La_2O_3$. It is demonstrated that the oxidation resistance of the cast Mo-Si-B alloy can be significantly improved by coating with those oxide particles. The growth of the oxide layer is reduced for the oxide particle coated Mo-Si-B alloy. Especially, for the alloy with $ZrO_2$ coating, the thickness of oxide layer becomes only one fifth of that of uncoated alloys when exposed to in air for 100 hrs. The reduction of oxide scale growth of the cast Mo-Si-B alloy due to oxide particle coatings are discussed in terms of the change of viscosity of glassy oxide phases that form during oxidation at high temperature.

Correlations between Electrical Properties and Process Parameters of Silicon Nitride Films Prepared by Low Temperature (100℃) Catalytic CVD

  • Noh, Se Myoung;Hong, Wan-Shick
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.3
    • /
    • pp.209-214
    • /
    • 2015
  • Silicon nitride films were deposited at $100^{\circ}C$ by using the catalytic chemical vapor deposition technique. The source gas mixing ratio, $R_N=[NH_3]/[SiH_4]$, was varied from 10 to 30, and the hydrogen dilution ratio, $R_H=[H_2]/[SiH_4]$, was varied from 20 to 100. The breakdown field strength reached a maximum value at $R_N=20$ and $R_H=20$, whereas the resistivity decreased in the same sample. The relative permittivity had a positive correlation with the breakdown field strength. The capacitance-voltage threshold curve showed an asymmetric hysteresis loop, which became more squared as $R_H$ increased. The width of the hysteresis window showed a negative correlation with the slope of the transition region, implying that the combined effect of $R_N$ and $R_H$ overides the interface defects while creating charge storage sites in the bulk region.

A Study of Properties of 3C-SiC Films deposited by LPCVD with Different Films Thickness

  • Noh, Sang-Soo;Seo, Jeong-Hwan;Lee, Eung-Ahn
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.3
    • /
    • pp.101-104
    • /
    • 2008
  • The electrical properties and microstructure of nitrogen-doped poly 3C-SiC films were studied according to different thickness. Poly 3C-SiC films were deposited by LPCVD(low pressure chemical vapor deposition) at $900^{\circ}C$ and 4 Torr using $SiH_2Cl_2$ (100 %, 35 sccm) and $C_2H_2$ (5 % in $H_2$, 180 sccm) as the Si and C precursors, and $NH_3$ (5 % in $H_2$, 64 sccm) as the dopant source gas. The resistivity of the 3C-SiC films with $1,530{\AA}$ of thickness was $32.7{\Omega}-cm$ and decreased to $0.0129{\Omega}-cm$ at $16,963{\AA}$. In XRD spectra, 3C-SiC is so highly oriented along the (1 1 1) plane at $2{\theta}=35.7^{\circ}$ that other peaks corresponding to SiC orientations are not presented. The measurement of resistance variations according to different thickness were carried out in the $25^{\circ}C$ to $350^{\circ}C$ temperature range. While the size of resistance variation decreases with increasing the films thickness, the linearity of resistance variation improved.

Low-Temperature Selective Epitaxial Growth of SiGe using a Cyclic Process of Deposition-and-Etching (증착과 식각의 연속 공정을 이용한 저온 선택적 실리콘-게르마늄 에피 성장)

  • 김상훈;이승윤;박찬우;심규환;강진영
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.8
    • /
    • pp.657-662
    • /
    • 2003
  • This paper presents a new fabrication method of selective SiGe epitaxial growth at 650 $^{\circ}C$ on (100) silicon wafer with oxide patterns by reduced pressure chemical vapor deposition. The new method is characterized by a cyclic process, which is composed of two parts: initially, selective SiGe epitaxy layer is grown on exposed bare silicon during a short incubation time by SiH$_4$/GeH$_4$/HCl/H$_2$system and followed etching step is achieved to remove the SiGe nuclei on oxide by HCl/H$_2$system without source gas flow. As a result, we noted that the addition of HCl serves not only to reduce the growth rate on bare Si, but also to suppress the nucleation on SiO$_2$. In addition, we confirmed that the incubation period is regenerated after etching step, so it is possible to grow thick SiGe epitaxial layer sustaining the selectivity. The effect of the addition of HCl and dopants incorporation was investigated.

Boron doping with fiber laser and lamp furnace heat treatment for p-a-Si:H layer for n-type solar cells

  • Kim, S.C.;Yoon, K.C.;Yi, J.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.322-322
    • /
    • 2010
  • For boron doping on n-type silicon wafer, around $1,000^{\circ}C$ doping temperature is required, because of the relatively low solubility of boron in a crystalline silicon comparing to the phosphorus case. Boron doping by fiber laser annealing and lamp furnace heat treatment were carried out for the uniformly deposited p-a-Si:H layer. Since the uniformly deposited p-a-Si:H layer by cluster is highly needed to be doped with high temperature heat treatment. Amorphous silicon layer absorption range for fiber laser did not match well to be directly annealed. To improve the annealing effect, we introduce additional lamp furnace heat treatment. For p-a-Si:H layer with the ratio of $SiH_4:B_2H_6:H_2$=30:30:120, at $200^{\circ}C$, 50 W power, 0.2 Torr for 30 min. $20\;mm\;{\times}\;20\;mm$ size fiber laser cut wafers were activated by Q-switched fiber laser (1,064 nm) with different sets of power levels and periods, and for the lamp furnace annealing, $980^{\circ}C$ for 30 min heat treatment were implemented. To make the sheet resistance expectable and uniform as important processes for the $p^+$ layer on a polished n-type silicon wafer of (100) plane, the Q-switched fiber laser used. In consequence of comparing the results of lifetime measurement and sheet resistance relation, the fiber laser treatment showed the trade-offs between the lifetime and the sheet resistance as $100\;{\omega}/sq.$ and $11.8\;{\mu}s$ vs. $17\;{\omega}/sq.$ and $8.2\;{\mu}s$. Diode level device was made to confirm the electrical properties of these experimental results by measuring C-V(-F), I-V(-T) characteristics. Uniform and expectable boron heavy doped layers by fiber laser and lamp furnace are not only basic and essential conditions for the n-type crystalline silicon solar cell fabrication processes, but also the controllable doping concentration and depth can be established according to the deposition conditions of layers.

  • PDF

Adsorption Reactions of Trimethylgallium and Arsine on H/Si(100)-2x1 Surface

  • Cho, Ji-Eun;Ghosh, Manik Kumer;Choi, Cheol-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.8
    • /
    • pp.1805-1810
    • /
    • 2009
  • The adsorptions of trimethygallium (TMG) and arsine (As$H_3$) on H/Si(100)-2x1 surface were theoretically investigated. In the case of TMG adsorption, methane loss reaction, surface methylation, hydrogen loss reaction and ring closing reaction channels were found. The mechanism of As$H_3$ adsorption on the surface was also identified. Among these, the methane loss reaction depositing –Ga(C$H_3)_2$ was found to be the major channel due to its low barrier height and the large exothermicity. The surface methylation reaction is the second most favorable channel. In contrast, arsine turned out to be less reactive on the surface, implying that Arsine surface reaction would be the rate limiting step in the overall ALD process.