• 제목/요약/키워드: H-Section Steel

검색결과 221건 처리시간 0.021초

Test and analysis of concrete-filled double steel and double skin tubular columns having outer stainless steel tube

  • Tokgoz, Serkan;Karaahmetli, Sedat;Dundar, Cengiz
    • Steel and Composite Structures
    • /
    • 제45권1호
    • /
    • pp.23-38
    • /
    • 2022
  • This paper presents experimental and analytical studies of eccentrically loaded concrete-filled double steel (CFDST) and concrete-filled double skin tube (DCFST) columns having outer stainless steel tube. Eighteen CFDST and DCFST column specimens were manufactured and tested to examine the strength and load-deflection responses. In the study, the main parameters were concrete strength, load eccentricity, cross section and slenderness. The strengths, load-deflection diagrams and failure patterns of the columns were observed. In addition, the tested CFDST and DCFST columns were analyzed to attain the capacity and load versus lateral deflection responses. The obtained theoretical results were compared with the test results. A parametric study was also performed to research the effects of the ratio of eccentricity (e/Ho) slenderness ratio (L/r), Ho/to ratio, Hi/ti ratio and the concrete compressive strength on the behavior of columns. In this work, the obtained results indicated that the ductility and capacity of columns were affected by cross section, concrete strength, steel strength, loading eccentricity and slenderness.

형강을 이용한 강-콘크리트 합성복공판 기술개발 (Development of Steel-Concrete Composite Lining Board using Section Shape Steel)

  • 오수철;양해술
    • 한국방재학회 논문집
    • /
    • 제8권3호
    • /
    • pp.67-75
    • /
    • 2008
  • 본 논문은 형강을 이용한 강-콘크리트 합성복공판 기술개발에 관한 것이다. 기존의 롤포밍 단면을 배제하고 형강을 이용하여 효율적인 강합성 단면을 구성함으로써 제작성과 경제성을 확보하고, 전단연결재의 개선을 통해 합성성능 뿐만 아니라 차후 콘크리트와 강재의 분리에 용이한 구조를 개발하였다. 성능검증 실험결과 기존의 전단연결재만으로는 강재와 콘크리트의 합성거동을 이루는데 한계가 있음을 확인하였다. 나아가 개발 복공판은 설계하중대비 5배 이상의 극한 내하력을 확보하고 있으며, 200만회 피로성능시험에 대해서도 손상이 거의 발생하지 않으며 우수한 구조성능을 나타냈다. 따라서, 형강을 이용한 합성단면 구성을 통해 구조성능 확보뿐만 아니라 기존 합성복공판 대비 약 27% 정도의 강재량 감소가 가능함을 확인하였다.

강재 기둥과 하이브리드 강재 보-RC 보 접합부의 반복 휨 거동 평가 (Evaluation on Cyclic Flexural Behavior of HSRC (Hybrid H-steel-reinforced Concrete) Beams Connected with Steel Columns)

  • 권혁진;양근혁;홍승현
    • 콘크리트학회논문집
    • /
    • 제29권3호
    • /
    • pp.291-298
    • /
    • 2017
  • 이 연구에서는 강재 기둥과 접합된 하이브리드 H-보-철근 콘크리트 보(HSRC)의 반복 휨 거동을 평가하였다. 실험 변수는 HSRC 보의 연결절점에 배근되는 장부철근의 유무이다. HSRC 보의 소성힌지는 RC 보보다는 기둥 접합부 부근의 H-보에서 형성되도록 유도하였다. 모든 실험체는 하중의 급격한 감소 없이 연성적인 거동을 보였으며, 비록 예상치 못한 H-기둥과 H-보 용접 접합부의 파괴가 발생하였지만, 결과적으로 4.6 이상의 변위연성비를 나타내었다. HSRC 보 시스템에서 RC 보의 균열진전, 휨 강도 및 연성에 대한 장부철근의 영향은 매우 미미하였다. HSRC 보 시스템의 휨 강도는 단면의 완전소성으로 가정하여 산정한 H-보의 최대 휨 내력에 비해 안전 측에서 평가될 수 있었다.

용접형강의 직접강도법 개발에 관한 연구 고찰 (The Development of the Direct Strength Method for Welded Steel Members)

  • 류승완;박성웅;권영봉
    • 한국강구조학회 논문집
    • /
    • 제27권2호
    • /
    • pp.231-241
    • /
    • 2015
  • 직접강도법은 NAS(2004)와 AS/NZS 4600(2005)에 의해서 냉간성형강재의 설계에 처음 채택되었다. 이 설계법은 용접형강 부재에도 효과적으로 적용이 가능하다고 판단된다. 본 논문에서는 최근 수행된 용접형강 부재의 직접강도법 개발에 대해서 살펴보고자 한다. 용접형강 압축 및 휨부재의 설계강도식은 H, C, RHS, CHS 형강, 플레이트거더 및 보강판 단면의 실험 결과에 근거하여 개발 되었다. 직접강도법과 현행 설계기준에 의해 예측된 강도의 비교 결과를 통하여 직접강도법을 적용하여 좌굴혼합이 발생하는 용접형강 기둥 및 보 부재의 압축, 휨 및 전단강도를 합리적으로 산정할 수 있는 것을 입증하였다.

철골 및 합성기둥 내화성능 확보를 위한 내화페인트 열적 물성치 규명과 소요두께 제안 (Clarification of the Thermal Properties of Intumescent Paint and Suggestion of the Required Fire Protection Thickness for Steel and Composite columns)

  • 김선희;옥치열;최성모
    • 복합신소재구조학회 논문집
    • /
    • 제6권1호
    • /
    • pp.21-29
    • /
    • 2015
  • Other countries(USA, Europe) have performed the fire resistance design of buildings by the alternative performance design methods, which are based on fire engineering theories. However, in Korea, the process on the alternative fire resistance performance design has only suggested without any applications for real steel structures. Therefore, In the case of steel structures stagnant research on refractory measures face difficulties in introducing fire resistance design. In this study, first of all, Intumescent paint was analyze the thermal properties(thermal conductivity, specific heat and density). In Sequence, using the section factor by H-standard section propose of section concrete filled steel tube and hollow. finally presents a reasonable thickness Intumescent paint takes time to target performance of the proposed cross-section steel tube.

Load and Deflection Recovery Capacities of PSC Girder with Unbonded PS H-Type Steel

  • Kim, Jong Wook;Kim, Jang-Ho Jay;Kim, Tae-Kyun;Lee, Tae Hee;Yang, Dal Hun
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1336-1349
    • /
    • 2018
  • Generally, a precast prestressed concrete (PSC) beam is used as girders for short-to-medium span (less than 30 m) bridges due to the advantages of simple design and construction, reduction of construction budget, maintenance convenience. In order to increase the span length beyond 50 m of precast PSC girder, PSC hollow box girder with unbonded prestressed H-type steel beam placed at the compressive region is proposed. The unbonded compressive prestressing in the H-type steel beams in the girder is made to recover plastic deflection of PSC girder when the pre-stressing is released. Also, the H-steel beams allow minimization of depth-to-length ratio of the girder by reducing the compressive region of the cross-section, thereby reducing the weight of the girder. A quasi-static 3-point bending test with 4 different loading steps is performed to verify safety and plastic deflection recovery of the girder. The experimental results showed that the maximum applied load exceeded the maximum design load and most of the plastic deflection was recovered when the compressive prestressing of H-type steel beams is released. Also using prestressed H-type steel as compression reinforcements in the upper part of cross section, repair and restoration difficulty and cost of PSC girders should be significantly reduced. The study result and analysis are discussed in detail in the paper.

Seismic performance of a novel bolt-and-welded connection of box-section beam and box-section column

  • Linfeng Lu;Songlin Ding;Yuzhou Liu;Zhaojia Chen;Zhongpeng Li
    • Steel and Composite Structures
    • /
    • 제47권3호
    • /
    • pp.375-382
    • /
    • 2023
  • The H-shaped steel beam is popular due to its ease of manufacturing and connection to the column. This profile, which is used as a shallow beam, needs the high weak-axis bending stiffness and torsional stiffness to meet the overall stability. Achieving the local beam flange stability, bearing capacity, bending stiffness, and torsional requirements need a great thickness and width of the beam flange, which causes, which will cause more uneconomical structural design. So, the box-section beam is the ideal alternative. However, the current design specifications do not have design rules for the bolt-and-welded connection of the box-section beam and box-section column. The paper proposes a novel bolt-and-welded connection of the box-section beams and box-section columns based on a high-rise structural design scheme. Three connection models, BASE, WBF, and RBS, are analyzed under cyclic loading in ABAQUS software. The failure modes, hysteresis response, bearing capacity, ductility, plastic rotation angle, energy dissipation, and stiffness degradation of all models are determined and compared. Compared with the other two models, the model WBF exhibited excellent seismic performance, ductility, and plastic rotation ability. Finally, model WBF was chosen as the connection scheme used in the project design.

작은 축력을 받는 H형강 기둥의 베이스플레이트 거동과 설계 (Behavior and Design of H-Section Steel Column Base Plates for Light Concentric Load)

  • 심기철;김은화;김원기
    • 한국강구조학회 논문집
    • /
    • 제16권4호통권71호
    • /
    • pp.453-461
    • /
    • 2004
  • 국내에서는 아직 철골구조의 베이스플레이트에 대한 설계기준이 작성되어 있지 않으므로 외국 기준 및 자료들을 근거로 중심축하중을 받는 H형강 기둥아래의 베이스플레이트에 대한 ASD 설계식을 제안하고자 한다. 또한 제안된 설계식과 하중을 변화시키며 설계한 예제를 비교한 결과, 보통의 축력을 받을 때에는 플레이트 면이 위험단면 $0.95d{\times}0.8b_f$인 사각형 길이면에 고정시킨 외측캔틸레버 보와 H형강 기둥 내부3변고정 플레이트로 가정한 것 중 위험한 쪽으로 설계한다. 그리고 적은 축력을 받을 때에는 베이스플레이트의 위험단면 및 지압면은 웨브에 면한 기둥 플랜지 사이의 캔틸레버로 설계한다.

Racking shear resistance of steel frames with corner connected precast concrete infill panels

  • Hoenderkamp, J.C.D.;Snijder, H.H.;Hofmeyer, H.
    • Steel and Composite Structures
    • /
    • 제19권6호
    • /
    • pp.1403-1419
    • /
    • 2015
  • When precast concrete infill panels are connected to steel frames at discrete locations, interaction at the structural interface is neither complete nor absent. The contribution of precast concrete infill panels to the lateral stiffness and strength of steel frames can be significant depending on the quality, quantity and location of the discrete interface connections. This paper presents preliminary experimental and finite element results of an investigation into the composite behaviour of a square steel frame with a precast concrete infill panel subject to lateral loading. The panel is connected at the corners to the ends of the top and bottom beams. The Frame-to-Panel-Connection, FPC4 between steel beam and concrete panel consists of two parts. A T-section with five achor bars welded to the top of the flange is cast in at the panel corner at a forty five degree angle. The triangularly shaped web of the T-section is reinforced against local buckling with a stiffener plate. The second part consists of a triangular gusset plate which is welded to the beam flange. Two bolts acting in shear connect the gusset plate to the web of the T-section. This way the connection can act in tension or compression. Experimental pull-out tests on individual connections allowed their load deflection characteristics to be established. A full scale experiment was performed on a one-storey one-bay 3 by 3 m infilled frame structure which was horizontally loaded at the top. With the characteristics of the frame-to-panel connections obtained from the experiments on individual connections, finite element analyses were performed on the infilled frame structures taking geometric and material non-linear behaviour of the structural components into account. The finite element model yields reasonably accurate results. This allows the model to be used for further parametric studies.

Seismic behavior of steel reinforced concrete (SRC) joints with new-type section steel under cyclic loading

  • Wang, Qiuwei;Shi, Qingxuan;Tian, Hehe
    • Steel and Composite Structures
    • /
    • 제19권6호
    • /
    • pp.1561-1580
    • /
    • 2015
  • No significant improvement has been observed on the seismic performance of the ordinary steel reinforced concrete (SRC) columns compared with the reinforced concrete (RC) columns mainly because I, H or core cross-shaped steel cannot provide sufficient confinement for core concrete. Two improved SRC columns by constructing with new-type section steel were put forward on this background: a cross-shaped steel whose flanges are in contact with concrete cover by extending the geometry of webs, and a rotated cross-shaped steel whose webs coincide with diagonal line of the column's section. The advantages of new-type SRC columns have been proved theoretically and experimentally, while construction measures and seismic behavior remain unclear when the new-type columns are joined onto SRC beams. Seismic behavior of SRC joints with new-type section steel were experimentally investigated by testing 5 specimens subjected to low reversed cyclic loading, mainly including the failure patterns, hysteretic loops, skeleton curves, energy dissipation capacity, strength and stiffness degradation and ductility. Effects of steel shape, load angel and construction measures on seismic behavior of joints were also analyzed. The test results indicate that the new-type joints display shear failure pattern under seismic loading, and steel and concrete of core region could bear larger load and tend to be stable although the specimens are close to failure. The hysteretic curves of new-type joints are plumper whose equivalent viscous damping coefficients and ductility factors are over 0.38 and 3.2 respectively, and this illustrates the energy dissipation capacity and deformation ability of new-type SRC joints are better than that of ordinary ones with shear failure. Bearing capacity and ductility of new-type joints are superior when the diagonal cross-shaped steel is contained and beams are orthogonal to columns, and the two construction measures proposed have little effect on the seismic behavior of joints.