• Title/Summary/Keyword: H-베타

Search Result 139, Processing Time 0.032 seconds

Antigenic Pproperties of preS2 Region of Hepatitis B Virus Envelope Proteins (B형 간염바이러스 표면단백질 중 preS2 부위의 항원적 특성)

  • 이기녕;이상철;권기선;정홍근;유명희
    • Korean Journal of Microbiology
    • /
    • v.28 no.1
    • /
    • pp.6-12
    • /
    • 1990
  • The preS2 wequence of an adr hepatitis B virus was cloned and expressed in Escherichia coli as a $\beta$-galactosidase fusion polypeptide. Recombinant preS2 product interacted with the preS2-specific monoclonal antibody H8 which was induced by surface antigen particles isolated from a Korean gepatitis patient. The H8 showed only a minor cross-reactivity with recombinant preS2 product of adw2 subtype. Determination of nucleotide sequence of the adr preS2 revealed that twelve amino acid residue substitutions between adr and adw2 subtype sequences. The antigenic determinant to H8 must include some of these differences.

  • PDF

Preparation and Characterizations of Complex Composed of ${\beta}$-Cyclodextrin Polymer/Cinnamic Acid (베타-사이클로 덱스트린 중합체/신남산 복합체의 제조 및 특성 연구)

  • Mok, Eun Young;Cha, Hyun Ju;Kim, Jin-Chul
    • Applied Chemistry for Engineering
    • /
    • v.23 no.5
    • /
    • pp.462-466
    • /
    • 2012
  • $\beta$-cyclodextrin ($\beta$-CD) polymers were prepared in a strong alkali condition solution (NaOH solution 30% (w/v)) using epichlorohydrin (EPI) as a cross-linker, and the molar ratio of EPI to $\beta$-CD was 10 : 1. The $\beta$-CD content in $\beta$-CD polymers is about 52%. In order to get the photo-responsible and pH-responsible, cinnamic acid was added to be inserted into the cavities of $\beta$-CD due to the hydrophobic interaction. The complex formation was confirmed using transmission electron microscope. The dimerization degree of complexes increased under UV irradiation at $\lambda$ = 365 nm but decreased under the UV irradiation at $\lambda$ = 254 nm. Dynamic light scattering analysis of particle sizes showed that the sizes of complexes did not change with different UV wavelength. Moreover, the complexes were pH-responsible because of the carboxyl group of cinnamic acid, but the size and zeta potential of the complex did not change in strong acid and alkali conditions.

Comparison of Physicochemical Properties between Ursodeoxycholic Acid and Chenodeoxycholic Acid Inclusion Complexes with ${\beta}-Cyclodextrin$ (우르소데옥시콜린산 및 케노데옥시콜린산의 베타시클로덱스트린 포접복합체의 물리화학적 특성비교)

  • Lee, Seung-Yong;Chung, Youn-Bok;Han, Kun;Shin, Jae-Young
    • YAKHAK HOEJI
    • /
    • v.38 no.3
    • /
    • pp.300-310
    • /
    • 1994
  • Physicochemical properties for the inclusion complex of chenodeoxycholic acid(CDCA) and it's $7{\beta}-hydroxy$ epimer ursodeoxycholic acid(UDCA) with ${\beta}-cyclodextrin({\beta}-CyD)$ were studied. The formation of the complex in the solid state were confimed by polarized microscopy and differential scanning calorimetry(DSC). Proton nuclear magnetic resonance$(^1H-NMR)$spectroscopy showed that CDCA and UDCA form an inclusion complex with ${\beta}-CyD$ in aqueous solution. The 1 : 1 stoichiometry of the complex was dextermined by the continuous variation method. From DSC and $^1H-NMR$ studies, there were not any differences between CDCA and UDCA. Complex of CDCA and UDCA showed increase in solubility and dissolution compared with CDCA and UDCA alone, respectively. Solubility pattern of UDCA complex was pH independent but, CDCA complex was like that of CDCA. Dissolution rate increased markedly in case of UDCA complex compared with CDCA complex, especially in acidic pH value.

  • PDF

Assessment of Effective Doses in the Radiation Field of Contaminated Ground Surface by Monte Carlo Simulation (몬테칼로 시뮬레이션에 의한 지표면 오염 방사선장에서의 유효선량 평가)

  • Chang, Jai-Kwon;Lee, Jai-Ki;Chang, Si-Young
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.4
    • /
    • pp.205-213
    • /
    • 1999
  • Effective dose conversion coefficients from unit activity radionuclides contaminated on the ground surface were calculated by using MCNP4A rode and male/female anthropomorphic phantoms. The simulation calculations were made for 19 energy points in the range of 40 keV to 10 MeV. The effective doses E resulting from unit source intensity for different energy were compared to the effective dose equivalent $H_E$ of previous studies. Our E values are lower by 30% at low energy than the $H_E$ values given in the Federal Guidance Report of USEPA. The effective dose response functions derived by polynomial fitting of the energy-effective dose relationship are as follows: $f({\varepsilon})[fSv\;m^2]=\;0.0634\;+\;0.727{\varepsilon}-0.0520{\varepsilon}^2+0.00247{\varepsilon}^3,\;where\;{\varepsilon}$ is the gamma energy in MeV. Using the response function and the radionuclide decay data given in ICRP 38, the effective dose conversion coefficients for unit activity contamination on the ground surface were calculated with addition of the skin dose contribution of beta particles determined by use of the DOSEFACTOR code. The conversion coefficients for 90 important radionuclides were evaluated and tabulated. Comparison with the existing data showed that a significant underestimates could be resulted when the old conversion coefficients were used, especially for the nuclides emitting low energy photons or high energy beta particles.

  • PDF

Saccharification and alcohol fermentation characteristics of a mixture of tapioca and hulled barley (타피오카와 겉보리 혼합원료의 당화 및 알코올 발효의 특성 연구)

  • Kim, Sun Hye;Oh, Jong Soo;Kang, Sung Tae
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.1
    • /
    • pp.18-23
    • /
    • 2019
  • An enzymatically saccharified tapioca and hulled barley (TB) raw mixed solution was used to examine alcohol fermentation characteristics. The TB mixture was liquefied with 0.04% ${\alpha}-amylase$ "Spezyme-Fred" and saccharified using an enzyme mixture (GPB), which consisted of glucoamylase (G), protease (P), and ${\beta}-glucanase$ (B). After the TB mixture (7:3, w/w) saccharified for 150 min at $50^{\circ}C$, its glucose content was 12.9% and viscosity was 26 cp. The use of GPB for the saccharification of TB was appropriate because the addition of ${\beta}-glucanase$ increases the glucose yield and decreases the viscosity of the saccharification liquid. The TB ratio was optimized to 7:3 (w/w) on the basis of the lower viscosity and the higher glucose content after saccharification. After TB mixture with 300% (w/w) water content was better condition than others for alcohol fermentation when it was carried out at $30^{\circ}C$. The alcohol and glucose contents of the TB mixture fermented for 72 h were 9.0 and 0.02%, respectively, and the pH and total acidity were 4.3 and 0.3%, respectively.

Synthesis and Surface Active Properties of Amphoteric Surfactant Derivatives(I);Synthesis of N-Alkyl or Acyl Hydroxy sulfobetaines (양쪽성 이온 계면활성제의 유도체합성 및 계면성에 관한 연구(제1보);N-알킬 혹은 아실히드록시 술포베타인류의 합성)

  • Lee, J.H.;Ha, J.W.;Park, H.J.;No, Y.C.;Nam, K.D.
    • Journal of the Korean Applied Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.71-77
    • /
    • 1994
  • In order to review industrial application of amphoteric surfactants, new types of hydroxy sulfobetaine, 3-(N, N-dimethyl N-dimethyl-N-alkylammonio)-2-hydroxy-1-propane sulfonate and 3-(N, N-dimethyl N-acylammonio)-2-hydroxy-1-propane sulfonate were prepared by the reaction of quaternized sodium 1-chloro-2-hydroxy-3-propane sulfonate with N, N-dimethyl-N-alkylamine and N, N-dimethyl N-acylamido propylamine that have a straight chain radical of 12, 18 carbon atoms respectively in the presence of alkali catalyst. All the reaction products could be separated by means of column and thin layer chromatography, and the yields of all products ranged in $85{\sim}90%$, the structure of them could be confirmed from IR and $^{1}H$-NMR spectra.

A Study of Intercalations-complex of Montmorillonite as Model-system (IV) (Model-System으로서의 몬트모릴로나이트의 층간화합물에 관한 연구(IV))

  • Cho, Sung-Jun
    • The Journal of Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.109-118
    • /
    • 2002
  • In this research, the cation-exchange-reactions between Na-Montmorillonite and betaine compound, $R_{11}SO_4$, with acid group at the end of alkyl chain were performed under the general condition with dist. water including $CO_2$ and under the different pH-conditions with dist. water without $CO_2$, and their behaviors were observed. As results the exchange reaction under the general condition was perfectly finished after 49 h exchange time, and the basal spacings obtained under the exchange solution and after washing with methanol and drying in high vacuum were 23.6, 17.1 and $15.0\AA$, respectively. The basal spacings obtained under pH-exchange solution after exchange time under different pH-values lied between about 24.7 and $25.6\AA$ independently of the pH-values, and those measured after drying on the air and in high vacuum were about $20.0\AA$ and $13.8~14.4\AA$, respectively.

  • PDF

Protective effect of lycopene against cytokine-induced β-cell apoptosis in INS-1 cells (라이코펜이 사이토카인에 의해 유도된 베타세포 사멸에 미치는 효과 및 기전 연구)

  • Kim, Kyong;Jang, Se-Eun;Bae, Gong Deuk;Jun, Hee-Sook;Oh, Yoon Sin
    • Journal of Nutrition and Health
    • /
    • v.51 no.6
    • /
    • pp.498-506
    • /
    • 2018
  • Purpose: Lycopene, a carotenoid with anti-oxidant properties, occurs naturally in tomatoes and pink grapefruit. Although the beneficial effects of lycopene on various disorders have been established, little attention has been paid to the possible anti-diabetic effects of lycopene focusing on ${\beta}$-cells. Therefore, this study investigated the potential of lycopene to protect ${\beta}$-cells against apoptosis induced by a cytokine mixture. Methods: For toxicity experiments, the cells were treated with 0.1 ~ 10 nM of lycopene, and the cell viability in INS-1 cells (a rat ${\beta}$-cell line) was measured using a MTT assay. To induce cytokine toxicity, the cells were treated with a cytokine mixture (20 ng/mL of $TNF{\alpha}$ + 20 ng/mL of IL-$1{\beta}$) for 24 h, and the effects of lycopene (0.1 nM) on the cytokine toxicity were measured using the MTT assay. The expression levels of the apoptotic proteins were analyzed by Western blotting, and the level of intracellular reactive oxidative stress (ROS) was monitored using a DCFDA fluorescent probe. The intracellular ATP levels were determined using a luminescence kit, and mRNA expression of the genes coding for anti-oxidative stress response and mitochondrial function were analyzed by quantitative reverse-transcriptase PCR. Results: Exposure of INS-1 cells to 0.1 nM of lycopene increased the cell viability significantly, and protected the cells from cytokine-induced death. Lycopene upregulated the mRNA and protein expression of B-cell lymphoma-2 (Bcl-2) and reduced the expression of the Bcl-2 associated X (Bax) protein. Lycopene inhibited apoptotic signaling via a reduction of the ROS, and this effect correlated with the upregulation of anti-oxidative stress response genes, such as GCLC, NQO1, and HO-1. Lycopene increased the mRNA expression of mitochondrial function-related genes and increased the cellular ATP level. Conclusion: These results suggest that lycopene reduces the level of oxidative stress and improves the mitochondrial function, contributing to the prevention of cytokine-induced ${\beta}$-cell apoptosis. Therefore, lycopene could potentially serve as a preventive and therapeutic agent for the treatment of type 2 diabetes.

Ultrasonic relaxation associated with the complex formation of benzoic acid derivative and β-cyclodextrin (벤조산 유도체와 베타 사이클로덱스트린의 복합체 형성반응에 의한 초음파 완화)

  • Park, Shin;Bae, Jongrim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.6
    • /
    • pp.387-393
    • /
    • 2017
  • The dynamic interactions between benzoic acid derivative ($pH{\approx}7.0$)(guest) and ${\beta}$-cyclodextrin (${\beta}$-CD)(host) were investigated in an aqueous solutions in terms of ultrasonic absorption in the frequency range 0.2 MHz ~ 50 MHz with emphasis on the low-frequency range below 1 MHz at $25^{\circ}C$. We show that the interaction of ${\beta}$-CD and benzoic acid derivative complies with a typical spectrum of a single relaxation process around a few MHz. The ultrasonic relaxation observed in these solutions was due to a perturbation of a chemical equilibrium related to a reaction of an inclusion complex formed by the host and guest. The rate constant ($k_b=7.48{\times}10^6M^{-1}s^{-1}$) and equilibrium constant ($K=68.6M^{-1}$) were determined from the concentration dependences of benzoic acid on the relaxation frequency. The standard volume change (${\Delta}V=10.6{\times}10^{-6}m^3mol^{-1}$) of the reaction was also computed from the maximum absorption per wavelength. It was found that the hydrophobicity of guest molecules played an important role in the formation of the inclusion complex.

Mechanisms of Insulinotropic Effect of YHB-2017 [Genistein] Isolated from fermentation Broths of Streptomyces sp. (방선균에서 유래한 YHB-2017 [Genistein]의 인슐린 분비 촉진 작용 기전)

  • Kwag, Won-Jae;Park, You-Hoi;Park, Jun-Chul;Lee, Byung-Kyu;Kang, Yup;Choe, Tae-Boo
    • KSBB Journal
    • /
    • v.21 no.6 s.101
    • /
    • pp.466-473
    • /
    • 2006
  • Impaired insulin secretion from pancreatic beta-cells in response to glucose is an important feature in the pathology of non-insulin-dependent diabetes mellitus (NIDDM). In the course of screening for useful insulin secretagogues, we have isolated and identified YHB-2017 (Genistein) as a insulin secretion potentiator from fermentation broths of our in-house microbial library. The insulinotropic activity of YHB-2017 in isolated rat pancreatic islets was exerted only at high concentration of glucose (8.3-16 mM) but not at low concentration of glucose (3.3-5.5 mM). Also, in perifusion study with isolated rat pancreatic islets, YHB-2017 stimulated insulin secretion in a time-dependent manner when YHB-2017 was added to KRB buffer containing 16 mM glucose. In the presence of $200\;{\mu}M$ diazoxide and 35 mM KCI, which stimulates maximum $Ca^{2+}$ influx independently of KATP channel, YHB-2017 enhanced KATP channel-independent insulin secretion at high concentration glucose (16 mM). To elucidate the mechanisms of the glucose-dependent potentiation effect of YHB-2017, pharmacologic inhibitors for protein kinase A, protein kinase C and calcium/calmodulin kinase II were pre-treated and then the potentiation effect of YHB-2017 on insulin secretion was investigated. Pre-treatment of H89 as a PKA inhibitor had a significant inhibitory effect on YHB-2017-induced potentiation effect. Furthermore, western immunoblotting analyses revealed that YHB-2017 increased phosphorylation of PKA substrates and cAMP response element-binding protein (CREB) under high concentration of glucose. These results demonstrated that the insulinotropic effect of YHB-2017 is mediated through PKA signal pathway and activated amplifying $K_{ATP}$ channel-independent insulin secretion pathway.