• 제목/요약/키워드: H atom abstraction

검색결과 14건 처리시간 0.022초

Medium effects on the H-Atom Abstraction and Silyl-Transfer Photoreactions of Silylalkyl Ketones

  • 오선화
    • Journal of Photoscience
    • /
    • 제12권1호
    • /
    • pp.47-50
    • /
    • 2005
  • Mediumeffects have been explored on the competitive H-atom abstraction and SET-promoted, silyl-transfer reactions of excited states of silylalkyl-substituted phenyl ketones. The chemical selectivities of photochemical reactions of silylalkyl phenyl ketones appear to depend on medium polarity, medium silophilicity, added metal cation and alkyl length. Irradiations of silylalkylketones in aqueous solvent system and in presence of metal cation such as $Li^+$ and $Mg^{+2} $lead to formation of acetophenone predominantly by the sequential SET-silyl transfer route.

  • PDF

Si(100) ETCHING BY THERMAL-ENERGY HYDROGEN ATOMS

  • Kang, Joo-Hyun;Jo, Sam-Keun;John G. Ekerdt
    • 한국진공학회지
    • /
    • 제6권S1호
    • /
    • pp.59-65
    • /
    • 1997
  • Efficient Si(100) etching by thermal H atoms at low substrate temperatures has been achieved. Gas-phase etching product $SiH_4$(g) upon H atom bombardment resulting from direct abstraction of $SiH_3$(a) by impinging H atoms was detected with a quadrupole mass spectrometer over the substrate temperature range of 105-408 K Facile depletion of all surface silyl ($SiH_3$) groups the dissociative adsorption product of disilane ($Si_2H_6$) at 105K from Si(100)2$\times$1 by D atoms and continuous regeneration and removal of $SiD_3$(a) were all consumed. These results provide direct evidence for efficient silicon surface etching by thermal hydrogen bombardment at cryogenic temperatures as low as 105K We attribute the high etching efficiency to the formation and stability of $SiH_3$(a) on Si(100) at lowered surface temperatures allowing the $SiH_3$(a) abstraction reaction by additional H atom to produce $SiH_4$((g).

  • PDF

Photoaddition Reactions of N-Methylthiophthalimide with $\alpha$-Silyl-n-electron Donors via Single Electron Transfer-Desilylation and Hydrogen Atom Abstraction Pathways

  • Yoon, Ung-Chan;Oh, Sun-Wha;Moon, Seong-Chul;Hyung, Tae-Gyung
    • Journal of Photoscience
    • /
    • 제9권1호
    • /
    • pp.17-22
    • /
    • 2002
  • Studies have been conducted to explore photoaddition reactions of N-methylthiophthalimide with $\alpha$-silyl-n-electron donors Et$_2$NCH$_2$SiMe$_3$, n-PrSCH$_2$SiMe$_3$ and EtOCH$_2$SiMe$_3$. Photoaddition of $\alpha$-silyl amine Et$_2$NCH$_2$SiMe$_3$ to N-methylthiophthalimide occurs in $CH_3$CN and benzene to produce non-silicon containing adduct in which thiophthalimide thione carbon is bonded to $\alpha$-carbon of $\alpha$-silyl amine in place of the trimethylsilyl group. In contrast, photoaddition of EtOCH$_2$SiMe$_3$ to N-methylthiophthalimide generates two diastereomeric adducts in which thiophthalimide thione carbon is connected to $\alpha$-carbon of $\alpha$-silyl ether in place of u-hydrogen. Based on a consideration of the oxidation potentials of u-silyl-n-electron donors and the nature of photoadducts, mechanism for these photoadditions involving single electron transfer(SET) -desilylation and H atom abstraction pathways are proposed.

  • PDF

Hydrogen Absorption by Crystalline Semiconductors: Si(100), (110) and (111)

  • 정민복;조삼근
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.383-383
    • /
    • 2010
  • Gas-phase hydrogen atoms create a variety of chemical and physical phenomena on Si surfaces: adsorption, abstraction of pre-adsorbed H, Si etching, Si amorphization, and penetration into the bulk lattice. Thermal desorption/evolution analyses exhibited three distinct peaks, including one from the crystalline bulk. It was previously found that thermal-energy gaseous H(g) atoms penetrate into the Si(100) crystalline bulk within a narrow substrate temperature window(centered at ~460K) and remain trapped in the bulk lattice before evolving out at a temperature as high as ~900K. Developing and sustaining atomic-scale surface roughness, by H-induced silicon etching, is a prerequisite for H absorption and determines the $T_s$ windows. Issues on the H(g) absorption to be further clarified are: (1) the role of the detailed atomic surface structure, together with other experimental conditions, (2) the particular physical lattice sites occupied by, and (3) the chemical nature of, absorbed H(g) atoms. This work has investigated and compared the thermal H(g) atom absorptivity of Si(100), Si(111) and Si(110) samples in detail by using the temperature programmed desorption mass spectrometry (TPD-MS). Due to the differences in the atomic structures of, and in the facility of creating atom-scale etch pits on, Si(100), (100) and (110) surfaces, the H-absorption efficiency was found to be larger in the order of Si(100) > Si(111) > Si(110) with a relative ratio of 1 : 0.22 : 0.045. This intriguing result was interpreted in terms of the atomic-scale surface roughening and kinetic competition among H(g) adsorption, H(a)-by-H(g) abstraction, $SiH_3(a)$-by-H(g) etching, and H(g) penetraion into the crystalline silicon bulk.

  • PDF

Hydrogen-Atom and Charge Transfer Reactions within Acetylene/Methanol and Ethylene/Methanol Heteroclusters

  • 신동남;최창주;정경훈;정광우
    • Bulletin of the Korean Chemical Society
    • /
    • 제17권10호
    • /
    • pp.939-943
    • /
    • 1996
  • Reactions that proceed within mixed acetylene-methanol and ethylene-methanol cluster ions were studied using an electron-impact time-of-flight mass spectrometer. When acetylene and methanol seeded in helium are expanded and ionized by electron impact, the ion abundance ratio, [CH3OH+]/[CH2OH+] shows a propensity to increase as the acetylene/methanol mixing ratio increases, indicating that the initially ionized acetylene ion transfers its charge to adjacent methanol molecules within the clusters. Investigations on the relative cluster ion intensity distributions of [CH3OH2+]/[CH3OH+] and [(CH3OH)2H+]/[CH3OH·CH2OH+] under various experimental conditions suggest that hydrogen-atom abstraction reaction of acetylene molecule with CH3OH ion is responsible for the effective formation of CH2OH ion. In ethylene/methanol clusters, the intensity ratio of [CH3OH2]/[CH3OH] increases linearly as the relative concentration of methanol decreases. The prominent ion intensities of (CH3OH)mH over (CH3OH)m-1CH2OH ions (m=1, 2, and 3) at all mixing ratios are also interpreted as a consequence of hydrogen atom transfer reaction between C2H4 and CH3OH to produce the protonated methanol cluster ions.

DFT법에 의한 진동 운동 진동수 계산을 통한 다고리 방향족 탄화수소의 라디칼 분해 경로 동정 (Identification of a Radical Decomposition Pathway(s) of Polycyclic Aromatic Hydrocarbon by the Vibrational Frequency Calculations with DFT Method)

  • 이병대;하광아;이민주
    • 대한화학회지
    • /
    • 제62권5호
    • /
    • pp.344-351
    • /
    • 2018
  • 이 연구에서는 기체 상태 페난트렌, 페난트렌올, 페난트레닐 라디칼, 하이드록실 페난트렌 라디칼에 대한 IR 스펙트럼을 BLYP/6-311++G(d,p)법을 사용하여 얻었다. 이 스펙트럼들을 비교함으로써 ${\cdot}OH$에 의한 페난트렌의 분해 반응 경로를 동정하는데 IR 스펙트럼 측정이 유용하게 사용될 수 있음을 볼 수 있었다. IR 스펙트럼에서 H 원자 제거 과정은 CH의 out-of-plane 굽힘 진동 영역인 $650{\sim}850cm^{-1}$, ${\cdot}OH$ 첨가 과정은 CH 신축 및 굽힘 진동 영역에서 용이하게 확인 할 수 있음을 알 수 있었다. 또한 5종의 페난트렌-n-올 (n = 1, 2, 3, 4, 9) 모두에 대하여 얻어진 IR 스펙트럼 역시 여기에 주어졌다.

용액에서의 아미노산 및 단백질 자유기에 관한 ESR 연구 제3보 $Ti-H_2O_2$ Flow System으로 만든 Lysozyme 자유기의 ESR 연구 (An ESR Study of Amino Acid and Protein Free Radicals in Solution Part Ⅲ. ESR Study of Lysozyme Free Radical Produced by $Ti-H_2O_2$ Flow System)

  • 홍순주
    • 대한화학회지
    • /
    • 제15권4호
    • /
    • pp.177-181
    • /
    • 1971
  • Free radicals of lysozyme produced by $Ti-H_2O_2$ system were studied in aqueous solution at room temperature using ESR with a continuous flow-mixing. The spectra, each consisting of a doublet with 5.5 G splitting and a broad resonance covering 80 G splitting are closely similar in shape to that for solid irradiated in vacuum at $77^{\circ}K$ and observed at room temperature immediately on warming. The result is assumed to indicate that the secondary protein radical components formed within 0.01 second, dead time of the mixing chamber, and initiated by hydrogen atom abstraction at ${\alpha}$-carbon atom of peptide chain in liquid solution at room temperature are identical to those resulting from the initial formation of a mixture of positive holes and negative ions by ionization processes as well as radical fragments by the rupture of chemical bonds in the solid during similar time at the same temperature. A broad resonance is observed with considerable amplitude on the high field side of the doublet, which is quite dissimilar to the spectra of irradiated solid lysozyme. This resonance was tentatively attributed to the polypeptide free radical in which unpaired electrons are localized on side chain.

  • PDF

수소 반응분위기에서 Chloroethylene 열분해 반응경로 특성 (Pyrolytic Reaction Pathway of Chloroethylene in Hydrogen Reaction Atmosphere)

  • 원양수
    • Korean Chemical Engineering Research
    • /
    • 제49권5호
    • /
    • pp.510-515
    • /
    • 2011
  • 염화탄화수소의 고온열분해 반응에서 생성물 반응경로 특성을 파악하기 위해 $H_2$ 반응분위기에서 1,1-dichloroethylene($CH_2CCl_2$) 열분해반응 실험을 수행하였다. 열분해반응 실험은 등온관형반응기를 이용하여 반응온도 $650{\sim}900^{\circ}C$, 반응시간 0.3~2.0초에서 진행하였으며, 반응물 mole 분율은 전체 실험에서 $CH_2CCl_2:H_2$ = 4:96 일정하게 유지하였다. 반응물 $CH_2CCl_2$가 완전분해온도는(분해율 99% 이상) $825^{\circ}C$(반응시간 1초 기준)였으며, $H_2$ 반응분위기에서 $CH_2CCl_2$ 주요 분해반응경로는 H원자 추출 및 첨가교체치환 연쇄반응으로 파악되었다. $CH_2CCl_2$가 46% 분해되는 $700^{\circ}C$에서 1차 생성물로 $CH_2CHCl$가 28%로 가장 높은 농도로 검출되었다. $775^{\circ}C$ 이상에서는 탈염소화된 $C_2H_4$가 2차 생성물로 가장 많이 생성되었으며, 반응온도가 증가할수록 염소 원자수가 작은 화합물이 생성되었으며 이들 화합물은 열화학적으로 안정된 물질이다. $825^{\circ}C$ 이상의 고온반응영역에서 탈염소반응의 부산물인 HCl과 $C_2H_4$, $C_2H_6$, $CH_4$ $C_2H_2$ 등과 같은 열화학적으로 안정된 탄화수소가 주요생성물로 검출되었다. 본 연구에서 고찰된 반응계에서 분해와 생성물분포 특성을 고려하고 열화학이론 및 반응속도론을 기초로 주요 반응경로를 제시하였다.

Copper(II) Oxyanion Complexes Derived from Sparteine Copper(II) Dinitrate: Synthesis and Characterization of 4- and 5-Coordinate Copper(II) Complexes

  • Lee, Yong-Min;Kim, Yong-Kyu;Jung, Hee-Cheul;Kim, Young-Inn;Choi, Sung-Nak
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권3호
    • /
    • pp.404-412
    • /
    • 2002
  • Nine copper(Ⅱ) oxyanion, and mixed oxyanion complexes that have four- or five-coordinate geometries around copper(Ⅱ) centers were derived from sparteine copper(Ⅱ) dinitrate precursor [Cu($C_{15}$$H_{26}$N2)(NO3)2]. The precursor complex undergoes an anion exchange with various oxyanions, and an interchange reaction with other sparteine copper(Ⅱ) complexes. The [Cu($C_{15}$$H_{26}$N2)(CH3CO2)2] also undergoes "halogen atom abstraction" reaction with CCl4 to produce the mixed anion complex [Cu($C_{15}$$H_{26}$N2)(CH3CO2)Cl]. The whole set of prepared complexes has been used for the comparative electrochemical and spectroscopic studies.