• Title/Summary/Keyword: H Shape Rolling

Search Result 60, Processing Time 0.03 seconds

The Optimization of Shape Control in High Reduction Rolling in Minimill Process (미니밀에서의 고압하율과 형상변화 최적화 방안에 관한 연구)

  • Choi B. W.;Kim T. H.;Hwang S. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.117-120
    • /
    • 2001
  • In hot roiling process, new rolling mills have been apapted to strip rolling but we can usually experience the problem of snaking of strip. This phenomenon was arisen by nonsymmetric rolling and on-centering and cambering of a strip and other mill conditions. Three dimensional analysis for strip rolling predicted the influence of nonsymmetric rolling, off-centering and pair crossing system This study evaluated the fundamental characteristics of snaking of a strip to optimize the operating condition for trouble free rolling.

  • PDF

Net Shape Forming Process for Ball Stud Using High Strength Micro-Alloyed Cold Forging Steel (냉간 비조질강을 이용한 볼 스터드의 정형가공 공정연구)

  • Yoon, D.J.;Choi, H.J.;Lee, H.W.;Lee, G.A.;Jang, B.L.;Seo, S.L.;Choi, S.
    • Transactions of Materials Processing
    • /
    • v.15 no.8 s.89
    • /
    • pp.562-567
    • /
    • 2006
  • Micro-alloyed steel or heat-treatment-free used in clean technology have been replacing for conventional quenched-and-tempered structural steels since the micro-alloyed forging steel was developed in early 1970s in Germany for saving money of heat treatment, simplified process, short delivery and good productivity. In this paper, ball stud assembled in steering system for automobile was selected to compare conventional process making heat treatment with new process using high strength micro-alloyed steel without heat treatment. The conventional process for ball stud was composed of a total of 6 steps including upsetting, forward extrusion, machining, burnishing and tread rolling with heat treatment and shot blasting. As opposed to conventional process, newly proposed process for ball stud using the clean technology without heat treatment is simplified such as forward extrusion, heading, upsetting, forming having a flange shape and tread rolling. Also net shape forming process to achieve specified process not to include machined step fur manufacturing the ball stud was applied to newly simplified process since micro-alloyed steel is difficult to be formed.

Development of Online Model for Mean Effective Strain, Roll Force and Area Reduction in Bar Rolling with Three Rolls (콕스밀에서 평균변형율, 압하력, 단면감소율에 대한 수식모델개발)

  • Je S. H.;Hwang S. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.162-165
    • /
    • 2001
  • In industrial practice, caliber design in shape rolling depends on the designer's experience, which in general is obtained through costly trial-and error process. on-line model which is relations of mean effective strain, roll force and area reduction is derived from finite element process simultion in bar rolling with three rolls.

  • PDF

Prediction of Crack Initiation and Its Application to the Design of Lead Screw Thread Rolling Process (Crack 발생 예측을 통한 Lead Screw 전조공정설계)

  • Shin, M.S.;Cha, S.H.;Kim, J.B.
    • Transactions of Materials Processing
    • /
    • v.19 no.3
    • /
    • pp.160-166
    • /
    • 2010
  • In this paper, the process parameters of thread rolling were designed based on the numerical analysis results. Firstly, the effective analysis conditions that guarantee the reliability of the analysis results were found. To find the effective analysis conditions, the analyses were carried out for various numbers of teeth. And then, the effects of the process parameters such as tool shape and temperature on the thread rolling performance were investigated. The formability in thread rolling process was evaluated in terms of Cockcroft-Latham damage value. In order to evaluate formability, Cockcroft-Latham damage value was normalized by the critical damage value which was obtained from the analysis of uniaxial tensile test. The analyses were carried out using DEFORM-3D. The results showed that the flank angle and crest round had an effect on the thread rolling load. It was also shown that temperature had significant effects on the effective strain distribution, rolling load, and damage. With the reduced formability of stainless steel at higher temperature, it was shown that the normalized damage values increased as the process temperature.

Ring-Rolling Design of a Large-Scale Ti-6Al-4V alloy (대형 Ti-6Al-4V 합금의 Ring-Rolling 공정설계)

  • Yeom, J.T.;Jung, E.J.;Kim, J.H.;Lee, D.G.;Park, N.K.;Choi, S.S.;Lee, C.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.373-376
    • /
    • 2006
  • The ring rolling design for a large-scale Ti-6Al-4V alloy ring was performed with a calculation method and FEM simulation. The ring rolling design includes geometry design and optimization of process variables. The calculation method was to determine geometry design such as initial billet and blank size, and final rolled ring shape. A commercial FEM code, SHAPE was used to simulate the effect of process variables in ring rolling on the distribution of the internal state variables such as strain, strain rate and temperature. In order to predict the forming defects during ring rolling, the process-map approach based on Ziegler's instability criterion was used with FEM simulation. Finally, an optimum process design to obtain sound Ti-6Al-4V rings without forming defects was suggested through combined approach of Ziegler's instability map and FEM simulation results.

  • PDF

A Roll-Bite Profile Map Approach for the Prediction of Front End Bending in Plate Rolling (후판 압연공정에서 선단부 굽힘 예측을 위한 롤 바이트 형상맵 기법에 관한 연구)

  • Byon, S.M.;Lee, J.H.;Kim, S.R.
    • Transactions of Materials Processing
    • /
    • v.20 no.4
    • /
    • pp.284-290
    • /
    • 2011
  • The front end bending(FEB) behavior of material that usually occurs in plate rolling is investigated. In this paper, a rollbite profile map approach that systematically predicts the FEB slope is presented. It is based on the concurrent use of shape factors and reduction ratios to ensure an accurate value of the FEB and its slope. In order to obtain the unit roll-bite profile map, the FEB slope model was decomposed into a temperature deviation component and a roll-velocity deviation component. By mapping the results of a series of finite element analyses to the unit functions of the roll-bite profile map, it was possible to obtain a realistic prediction of the FEB slope applicable to an actual plate rolling process. Thereby, the usefulness of the present approach is clearly demonstrated.

Deformation Behavior of Slab by Two-Step Sizing Press in a Hot Strip Mill (열간 압연에서 2단 사이징 프레스 금형에 의한 슬래브의 변형거동 예측)

  • Lee S. H.;Kim D. H.;Byon S. M.;Park H. D.;Kim B. M.
    • Transactions of Materials Processing
    • /
    • v.14 no.9 s.81
    • /
    • pp.791-797
    • /
    • 2005
  • Extensive width reduction of slabs is an important technology for achieving continuous production between the steelmaking and hot rolling processes. However, the vertical horizontal rolling process has many disadvantages, e.g., large width deviations and less efficient width reduction. This study was carried out to investigate the deformation of slab by sizing press with two steps die. To do it, dog-bone and camber are discussed in width sizing process considering the deformation behavior according to the deviation of anvil velocity and the deviation of initial slab temperature. In this paper, the various causes of the sizing press phenomena are mentioned for the purpose of understanding of rolling conditions. As a result, the optimal anvil shape having a minimum-forming load is obtained by FE-simulation and ANN.

Process Design for Large-Scale Ring-Rolling of Ti-6Al-4V Alloy (Ti-6Al-4V 합금의 대형 링 압연공정설계)

  • Yeom, J.T.;Kim, J.H.;Lee, D.G.;Park, N.K.;Choi, S.S.;Lee, C.S.
    • Transactions of Materials Processing
    • /
    • v.16 no.3 s.93
    • /
    • pp.172-177
    • /
    • 2007
  • The process design for large-scale ring rolling of Ti-6Al-4V alloy was performed by calculation method, processing map approach and FEM simulation. The ring rolling design includes geometry design and optimization of process variables. The calculation method was used to make geometry design such as initial billet and blank sizes, and final rolled ring shape. A commercial FEM code, SHAPE-RR was used to simulate the effect of process variables in ring rolling on the distribution of the internal state variables such as strain, strain rate and temperature. In order to predict the forming defects during ring rolling and the formation of over-heating above $\beta$-transus temperature due to deformation heating, the process-map approach based on Ziegler's instability criterion was used with FEM simulation. Finally, an optimum process design to obtain sound Ti-6Al-4V rings without forming defects was suggested through combined approach of Ziegler's instability map and FEM simulation results.