• 제목/요약/키워드: H2 production

검색결과 702건 처리시간 0.028초

기질 농도에 따른 미생물전기분해전지의 운전 특성 (Effect of substrate concentration on the operating characteristics of microbial electrolysis cells)

  • 서휘진;김재일;기서진;안용태
    • 유기물자원화
    • /
    • 제31권4호
    • /
    • pp.41-49
    • /
    • 2023
  • 본 연구는 주입 기질 농도에 따른 미생물전기분해전지 (Microbial electrolysis cell, MEC)의 운전성능을 조사하였다. 주입 기질 농도에 따른 MEC의 운전 성능을 비교하기 위해 6 개의 실험실 규모 MEC를 2, 4, 6 g/L Sodium acetate 조건으로 순서대로 주입 농도를 증가시켜 운전하였다. 전류밀도, 수소 생산량, SCOD 제거율을 분석하였고, 에너지 효율, cathodic hydrogen recovery를 계산하여 주입 기질 농도 별 MEC의 운전성능을 비교하였다. 체적 전류밀도는 4 g/L 조건에서 76.3 A/m3였고, 6 g/L로 주입 농도를 증가시켰을 때 19.0 A/m3로 4 g/L 주입 조건에 비해 75% 감소하였다. 수소 생산량은 4 g/L 주입 조건이 47.3 ± 16.8 mL로 가장 높았으나 수소 수율은 2 g/L 주입 조건이 1.1 L H2/g CODin로 가장 높았다. 에너지 효율 역시 2 g/L 조건에서 가장 높았고, 6 g/L 조건에서 가장 낮은 결과를 보여주었다. 최대 전기에너지 효율은 76.4%였으며, 2 g/L 조건에서 최대 전체에너지 효율은 39.7%였다. 그러나 기질 농도가 6 g/L로 증가하였을 때, 성능이 급격히 감소하였다. Cathodic hydrogen recovery 역시 에너지 효율과 유사한 경향을 보였으며, 가장 낮은 농도 조건에서 가장 높은 성능을 보여주었다. 따라서 MEC 운전에 있어서 SCOD 제거율뿐만 아니라 에너지 효율 등을 고려한 최적 운전을 위해서는 낮은 주입 농도 조건에서 운전하는 것이 바람직할 것으로 판단된다.

Leukotriene B4 receptors contribute to house dust mite-induced eosinophilic airway inflammation via TH2 cytokine production

  • Park, Donghwan;Kwak, Dong-Wook;Kim, Jae-Hong
    • BMB Reports
    • /
    • 제54권3호
    • /
    • pp.182-187
    • /
    • 2021
  • Leukotriene B4 (LTB4) is a lipid mediator of inflammation that is generated from arachidonic acid via the 5-lipoxygenase pathway. Previous studies have reported that the receptors of LTB4, BLT1, and BLT2 play mediatory roles in the allergic airway inflammation induced by ovalbumin (OVA). However, considering that house dust mites (HDMs) are the most prevalent allergen and well-known risk factor for asthmatic allergies, we are interested in elucidating the contributory roles of BLT1/2 in HDM-induced allergic airway inflammation. Our aim in this study was to investigate whether BLT1/2 play any roles in HDM-induced allergic airway inflammation. In this study, we observed that the levels of ligands for BLT1/2 [LTB4 and 12(S)-HETE (12(S)-hydroxyeicosatetraenoic acid)] were significantly increased in bronchoalveolar lavage fluid (BALF) after HDM challenge. Blockade of BLT1 or BLT2 as well as of 5-lipoxygenase (5-LO) or 12-lipoxygenase (12-LO) markedly suppressed the production of TH2 cytokines (IL-4, IL-5, and IL-13) and alleviated lung inflammation and mucus secretion in an HDM-induced eosinophilic airway-inflammation mouse model. Together, these results indicate that the 5-/12-LO-BLT1/2 cascade plays a role in HDM-induced airway inflammation by mediating the production of TH2 cytokines. Our findings suggest that BLT1/2 may be a potential therapeutic target for patients with HDM-induced allergic asthma.

Anti-inflammatory and Neurotrophic 2H-1-Benzopyran Derivatives of Chaenomeles sinensis

  • Ha, Young Jun;Lee, Tae Hyun;Subedi, Lalita;Kim, Hye Ryeong;Moon, Gyuri;Kim, Sun Yeou;Kim, Chung Sub
    • Natural Product Sciences
    • /
    • 제28권1호
    • /
    • pp.1-5
    • /
    • 2022
  • Two 2H-1-benzopyran derivatives, methyl 8-hydroxy-2,2-dimethyl-2H-1-benzopyran-5-carboxylate (1) and methyl 8-hydroxy-2,2-dimethyl-2H-1-benzopyran-6-carboxylate (2), including a new compound (1) were isolated from the twigs of Chaenomeles sinensis. Their chemical structures were characterized based on analysis of NMR data including 1H and 13C, COSY, HSQC, and HMBC and HRMS data. The isolated compounds (1 and 2) were assessed for their anti-neuroinflammatory activity by measuring inhibition levels of nitric oxide (NO) production in lipopolysaccharide (LPS)-activated BV-2 cells and for their neurotrophic activity by the secretion of nerve growth factor (NGF) in C6 cells. Compounds 1 and 2 exhibited powerful anti-neuroinflammatory effects with IC50 values of 17.14 and 19.30 μM, respectively, without cell toxicity, and also showed moderate effects on the stimulation of NGF secretion levels with 113.15 ± 3.54 and 130.20 ± 8.03%, respectively. The biosynthetic pathway of 1 and 2 was proposed that they would be derived from a protocatechuic acid and an isoprenyl unit.

한국 왕겨 바이오매스의 가스화를 통한 수소 생산 공정모사 예비 연구 (A Preliminary Study on Simulating the Hydrogen Production Process through Biomass Gasification Using Rice Husks from Korea)

  • 손지현;유미래;김명지;이상훈
    • 한국수소및신에너지학회논문집
    • /
    • 제33권6호
    • /
    • pp.699-706
    • /
    • 2022
  • Recently, hydrogen production is attracting attention. In this study, a process simulation was conducted on the gasification reaction to produce hydrogen using rice husks, which are produced as by-products of rice. For this purpose, Chuchung, Odae, and Dongjin rice, which are rice varieties produced in Korea, were compared with the literature. The Korean rice contained more hydrogen and less oxygen compared to the literature. As a result of the simulation, large amounts of H2 and CH4 and small amounts of CO2 and CO were produced accordingly. The conditions to maximize hydrogen production were a gasification reaction temperature of 700℃ and an Steam-to-Biomass (S/B) ratio of 0.4-0.6. However, because the S/B ratio is related to the gasification catalyst degradation, the model needs to be improved through additional experiments in the future. This study showed the possibility of hydrogen production using Korean rice husks, which had not been reported.

혐기성 수소발효를 결합한 생물학적 2단공정의 유기성폐자원 처리 및 바이오에너지 생산 (Two-stage Bioprocesses Combining Dark H2 Fermentation: Organic Waste Treatment and Bioenergy Production)

  • 이채영;유규선;한선기
    • 한국수소및신에너지학회논문집
    • /
    • 제26권3호
    • /
    • pp.247-259
    • /
    • 2015
  • This study was performed to investigate the application of dark $H_2$ fermentation to two-stage bioprocesses for organic waste treatment and energy production. We reviewed information about the two-stage bioprocesses combining dark $H_2$ fermentation with $CH_4$ fermentation, photo $H_2$ fermentation, microbial fuel cells (MFCs), or microbial electrolysis cells (MECs) by using academic information databases and university libraries. Dark fermentative bacteria use organic waste as the sole source of electrons and energy, converting it into $H_2$. The reactions related to dark $H_2$ fermentation are rapid and do not require sunlight, making them useful for treating organic waste. However, the degradation is not complete and organic acids remain. Thus, dark $H_2$ fermentation should be combined with a post-treatment process, such as $CH_4$ fermentation, photo $H_2$ fermentation, MFCs, or MECs. So far, dark $H_2$ fermentation followed by $CH_4$ fermentation is a promising two-stage bioprocess among them. However, if the problems of manufacturing expenses, operational cost, scale-up, and practical applications will be solved, the two-stage bioprocesses combining dark $H_2$ fermentation with photo $H_2$ fermentation, MFCs, or MECs have also infinite potential in organic waste treatment and energy production. This paper demonstrated the feasibility of two-stage bioprocesses combining dark $H_2$ fermentation as a novel system for organic waste treatment and energy production.

Seasonal atmospheric characteristics in a swine finishing barn equipped with a continuous pit recirculation system using aerobically treated manure

  • Choi, Yongjun;Ha, Duck-Min;Lee, Sangrak;Kim, Doo-Hwan
    • Animal Bioscience
    • /
    • 제35권12호
    • /
    • pp.1977-1985
    • /
    • 2022
  • Objective: This study was conducted to determine the seasonal characteristics of odorous material emissions from a swine finishing barn equipped with a continuous pit recirculation system (CPRS) using aerobically treated manure. Methods: The CPRS consists of an aerobic manure treatment process and a pit recirculation system, where the solid fraction is separated and composted. The aerated liquid fraction (290.0%±21.0% per day of total stored pig slurry) is continuously recirculated to the top of the slurry in the pit. Four confinement pig barns in three piggery farms were used: two were equipped with CPRS, and the other two operated a slurry pit under the slatted floor across all seasons. Results: The indoor, exhaust, and outside odor intensities were significantly lower in the CPRS group than in the control group (p<0.001). In the CPRS group, the odor intensity outside was significantly lower in the fall than in the other seasons (p = 0.015). In the indoor atmosphere, the temperature and CO2, NH3, and H2S contents of the CPRS group were significantly lower than those of the control group (p<0.05). In the CPRS group, indoor temperature did not significantly change in the spring, summer, and fall seasons and was significantly lower in the winter (p = 0.002). NH3, H2S, methyl mercaptan, dimethyl disulfide, trimethylamine, phenol, indole, and skatole levels were significantly lower in the CPRS group than in the control group (p<0.05). There were significant seasonal differences on the odorous material in both the control and CPRS groups (p<0.05), but the pattern was not clear across seasons. Conclusion: The CPRS can reduce the indoor temperature in the summer to a level similar to that in the spring and fall seasons. The CPRS with aerated liquid manure is expected to reduce and maintain malodorous emissions within acceptable limits in swine facilities.

Regulation of toll-like receptors expression in muscle cells by exercise-induced stress

  • Park, Jeong-Woong;Kim, Kyung-Hwan;Choi, Joong-Kook;Park, Tae Sub;Song, Ki-Duk;Cho, Byung-Wook
    • Animal Bioscience
    • /
    • 제34권10호
    • /
    • pp.1590-1599
    • /
    • 2021
  • Objective: This study investigates the expression patterns of toll-like receptors (TLRs) and intracellular mediators in horse muscle cells after exercise, and the relationship between TLRS expression in stressed horse muscle cells and immune cell migration toward them. Methods: The expression patterns of the TLRs (TLR2, TLR4, and TLR8) and downstream signaling pathway-related genes (myeloid differentiation primary response 88 [MYD88]; activating transcription factor 3 [ATF3]) are examined in horse tissues, and horse peripheral blood mononuclear cells (PBMCs), polymorphonuclear cells (PMNs) and muscles in response to exercise, using the quantitative reverse transcription-polymerase chain reaction (qPCR). Expressions of chemokine receptor genes, i.e., C-X-C motif chemokine receptor 2 (CXCR2) and C-C motif chemokine receptor 5 (CCR5), are studied in PBMCs and PMNs. A horse muscle cell line is developed by transfecting SV-T antigen into fetal muscle cells, followed by examination of muscle-specific genes. Horse muscle cells are treated with stressors, i.e., cortisol, hydrogen peroxide (H2O2), and heat, to mimic stress conditions in vitro, and the expression of TLR4 and TLR8 are examined in stressed muscle cells, in addition to migration activity of PBMCs toward stressed muscle cells. Results: The qPCR revealed that TLR4 message was expressed in cerebrum, cerebellum, thymus, lung, liver, kidney, and muscle, whereas TLR8 expressed in thymus, lung, and kidney, while TLR2 expressed in thymus, lung, and kidney. Expressions of TLRs, i.e., TLR4 and TLR8, and mediators, i.e., MYD88 and ATF3, were upregulated in muscle, PBMCs and PMNs in response to exercise. Expressions of CXCR2 and CCR5 were also upregulated in PBMCs and PMNs after exercise. In the muscle cell line, TLR4 and TLR8 expressions were upregulated when cells were treated with stressors such as cortisol, H2O2, and heat. Migration of PBMCs toward stressed muscle cells was increased by exercise and oxidative stresses, and combinations of these. Treatment with methylsulfonylmethane (MSM), an antioxidant on stressed muscle cells, reduced migration of PBMCs toward stressed muscle cells. Conclusion: In this study, we have successfully cultured horse skeletal muscle cells, isolated horse PBMCs, and established an in vitro system for studying stress-related gene expressions and function. Expression of TLR4, TLR8, CXCR2, and CCR5 in horse muscle cells was higher in response to stressors such as cortisol, H2O2, and heat, or combinations of these. In addition, migration of PBMCs toward muscle cells was increased when muscle cells were under stress, but inhibition of reactive oxygen species by MSM modulated migratory activity of PBMCs to stressed muscle cells. Further study is necessary to investigate the biological function(s) of the TLR gene family in horse muscle cells.

순산소 가스화 반응장에서 CO2 전환 메커니즘 연구 (Experimental Study on CO2 Reaction Mechanism in Oxy Gasification Reaction Field)

  • 노선아;윤진한;길상인;이정규;민태진
    • 대한기계학회논문집 C: 기술과 교육
    • /
    • 제3권4호
    • /
    • pp.285-290
    • /
    • 2015
  • 저급 에너지인 폐기물로부터 고부가 합성가스를 생산하고 온실가스 저감 연구를 동시에 수행하기 위하여 $1000-1400^{\circ}C$의 고온에서 순산소 가스화 연구를 수행하였다. 폐기물 시료로는 RPF (Refused Plastic Fuel)를 이용하였으며 실험 장치로는 열중량 분석기와 0.5 ton/day의 pilot plant 가스화 시스템을 이용하였다. 열중량 분석기에서는 이산화탄소에 의한 RPF 촤(char)의 가스화 실험을 수행하여 온도에 따른 중량 변화를 고찰하고 Boudouard reaction에 의해 일산화탄소가 생성되는 것을 확인하였다. 또한, 0.5 ton/day pilot plant system에서 RPF의 순산소 가스화를 통하여 고농도의 수소를 함유한 합성가스를 생산하였다. 생산된 합성가스는 수송용 연료 생산과 화학제품 생산에 가능한 수소와 일산화 탄소의 비율을 나타내었다.

메탄올 수증기개질을 위한 ZrO2 펠트 기반 Cu/Zn 촉매 특성 연구 (Characteristics of ZrO2 Felt Supported Cu/Zn Catalyst for Methanol Steam Reforming)

  • 최은영
    • 한국수소및신에너지학회논문집
    • /
    • 제28권2호
    • /
    • pp.129-136
    • /
    • 2017
  • Characteristics of $ZrO_2$ felt supported Cu/Zn catalysts have been investigated for the production of hydrogen via methanol steam reforming. Cu and Zn in different weight percent were loaded using wet impregnation over $ZrO_2$ felt support. The catalysts were characterized with BET and FE-SEM. The performance of these synthesized catalysts were investigated at SCR=1.5, $GHSV=2000h^{-1}$, temperature=$300{\sim}400^{\circ}C$, and pressure=2.5~19.5 barA. The results showed that the $Cu^{32.5}Zn^{7.5}ZrO_2$ catalyst was most active in terms of methanol conversion and hydrogen production. The methanol conversion in steam reforming of methanol was 84.6% at 19.5 barA and furnace $400^{\circ}C$ over $Cu^{32.5}Zn^{7.5}ZrO_2$ catalyst. The catalysts prepared using $ZrO_2$ felt show higher reactor temperature than the pellet type catalyst at same furnace temperature.

탄소중립 메탄 생산을 위한 열화학적 이산화탄소 메탄화 공정의 단열 반응기 성능 분석 (Performance Analysis of Adiabatic Reactor in Thermochemical Carbon Dioxide Methanation Process for Carbon Neutral Methane Production)

  • 김진우;유영돈;서민혜;백종민;김수현
    • 한국수소및신에너지학회논문집
    • /
    • 제34권3호
    • /
    • pp.316-326
    • /
    • 2023
  • Development of carbon-neutral fuel production technologies to solve climate change issues is progressing worldwide. Among them, methane can be produced through the synthesis of hydrogen produced by renewable energy and carbon dioxide captured through a CO2 methanation reaction, and the fuel produced in this way is called synthetic methane or e-methane. The CO2 methanation reaction can be conducted via biological or thermochemical methods. In this study, a 30 Nm3/h thermochemical CO2 methanation process consisting of an isothermal reactor and an adiabatic reactor was used. The CO2 conversion rate and methane concentration according to the temperature measurement results at the center and outside of the adiabatic reactor were analyzed. The gas flow into the adiabatic reactor was found to reach equilibrium after about 1.10 seconds or more by evaluating the residence time. Furthermore, experimental and analysis results were compared to evaluate performance of the reactor.