• Title/Summary/Keyword: H2 production

Search Result 689, Processing Time 0.03 seconds

Synthesis and Characterization of MoS2/Graphene-TiO2 Ternary Photocatalysts for High-Efficiency Hydrogen Production under Visible Light

  • Zhang, Feng-Jun;Kong, Cui;Li, Xuan;Sun, Xian-Yang;Xie, Wen-Jie;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.3
    • /
    • pp.284-290
    • /
    • 2019
  • Ternary MoS2/graphene (G)-TiO2 photocatalysts were prepared by a simple hydrothermal method. The morphology, phase structure, band gap, and catalytic properties of the prepared samples were investigated by X-ray diffraction, Raman spectroscopy, scanning electron microscopy, UV-vis spectrophotometry, and Brunauer-Emmett-Teller surface area measurement. The H2 production efficiency of the prepared catalysts was tested in methanol-water mixture under visible light. MoS2/G-TiO2 exhibited the highest activity for photocatalytic H2 production. For 5 wt.% and 1 wt.% MoS2 and graphene (5MT-1G), the production rate of H2 was as high as 1989 µmol-1h-1. The catalyst 5MT-1G showed H2 production activity that was ~ 11.3, 5.6, and 4.1 times higher than those of pure TiO2, 1GT, and 5MT, respectively. The unique structure and morphology of the MoS2/G-TiO2 photocatalyst contributed to its improved hydrogen production efficiency under visible light.

Oxidative stress impairs the meat quality of broiler by damaging mitochondrial function, affecting calcium metabolism and leading to ferroptosis

  • Chen, Zuodong;Xing, Tong;Li, Jiaolong;Zhang, Lin;Jiang, Yun;Gao, Feng
    • Animal Bioscience
    • /
    • v.35 no.10
    • /
    • pp.1616-1627
    • /
    • 2022
  • Objective: This work was conducted to investigate the effects of oxidative stress on meat quality, mitochondrial function, calcium metabolism and ferroptosis of broilers. Methods: In this study, a total of 144 one-day-old male Ross 308 chicks were divided into 3 groups (control group, saline group, and hydrogen peroxide [H2O2] group) with 6 replicates of 8 broilers each. The study lasted for 42 d. The broilers in the saline and H2O2 groups were intraperitoneally injected with 0.75% saline and 10.0% H2O2 on the 16th and 37th day of the experimental period respectively, the injection volumes were 1.0 mL/kg of broiler body weight. On the 42nd day of the experimental period, two chicks were randomly selected from each cage, a total of thirty-six chicks were stunned by electric shock and slaughtered to collect breast muscle samples. Results: The H2O2 exposure reduced pH value, increased drip loss and shear force of breast meat (p<0.05), impaired the ultrastructure and function of mitochondria. The H2O2 exposure damaged the antioxidant system in mitochondria, excessive reactive oxygen species carbonylation modified calcium channels on mitochondria, which impaired the activities of key enzymes on calcium channel, resulted in the increased calcium concentration in cytoplasm and mitochondria (p<0.05). In addition, the H2O2 exposure increased the iron content and lipid peroxidation (p<0.05), which induced ferroptosis. Conclusion: Oxidative stress could impair meat quality by causing mitochondrial dysfunction, resulting in calcium metabolism disorder and ferroptosis.

Effects of inorganic salts on biomass production, cell wall components, and bioethanol production in Nicotiana tabacum

  • Sim, Seon Jeong;Yong, Seong Hyeon;Kim, Hak Gon;Choi, Myung Suk;Choi, Pil Son
    • Journal of Plant Biotechnology
    • /
    • v.48 no.4
    • /
    • pp.278-288
    • /
    • 2021
  • The development of bioenergy through biomass has gained importance due to the increasing rates of fossil fuel depletion. Biomass is important to increase the productivity of bioethanol, and production of biomass with high biomass productivity, low lignin content, and high cellulose content is also important in this regard. Inorganic salts are important in the cultivation of biomass crops for the production of biomass with desirable characteristics. In this study, the roles of various inorganic salts in biomass and bioethanol production were investigated using an in vitro tobacco culture system. The inorganic salts evaluated in this study showed dramatic effects on tobacco plant growth. For example, H2PO4 substantially improved plant growth and the root/shoot (R/S) ratio. The chemical compositions of tobacco plants grown in media after removal of various inorganic salts also showed significant differences; for example, lignin content was high after Mg2+ removal treatment and low after K+ treatment and H2PO4 removal treatment. On the other hand, NO3- and H2PO4 treatments yielded the highest cellulose content, while enzymatic hydrolysis yielded the highest glucose concentration ratio 24 h after NH4+ removal treatment. The ethanol productivity after H2PO4 removal treatment was 3.95% (w/v) 24 h after fermentation and 3.75% (w/v) after 36 h. These results can be used as the basis for producing high-quality biomass for future bioethanol production.

Effect of Tryptone and Tungsten in Medium on Syngas Fermentation Using Clostridium ljundahlii (Clostridium ljundahlii를 이용한 합성가스 발효에서 배지 내 tryptone 및 tungsten의 영향)

  • Soeun Park;Young-Kee Kim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.327-329
    • /
    • 2023
  • In this study, an experiment was conducted to investigate the effect of the concentrations of tryptone, an organic nitrogen supplement, and sodium tungstate on the growth of microbial and the production of acetic acid and ethanol in the culture of Clostridium ljungdahlii. Microbial growth increased by 144.6%, and ethanol and acetic acid production improved by 8.6% and 36.7%, respectively, when 2.5 g/L of tryptone was added to the medium of the control experiment (0 g/L tryptone). In the experiment with 1 µM Na2WO4·2H2O, which is 100 times higher than the condition of the medium used in the control experiment (0.01 µM Na2WO4·2H2O), there was no significant difference in microbial growth or total production of C2 metabolites, but ethanol production increased and acetic acid production decreased. As a result, the ethanol/acetic acid production ratio increased significantly from 0.24 in the control experiment to 0.56.

Optimizing Culture Conditions to Maximize the Production of Laccase from Pholiota highlandensis (Pholiota highlandensis 유래 laccase 생산을 위한 배양조건의 최적화)

  • Choi, Hye-Ju;Moon, Soo-Jung;Jeon, Sung-Jong
    • Journal of Life Science
    • /
    • v.25 no.6
    • /
    • pp.673-679
    • /
    • 2015
  • The culture conditions needed to maximize the production of laccase from Pholiota highlandensis mycelia were investigated. Among the tested media for laccase production, Coriolus versicolor medium (CVM; 2% dextrose, 0.4% peptone, 0.6% yeast extract, 0.046% KH2PO4, 0.1% K2HPO4, 0.05% MgSO4·7H2O) showed the highest activity for the enzyme. Then, to optimize culture conditions for laccase activity, the influences of various carbon, nitrogen, phosphorus, and inorganic salt sources in CVM were investigated. The optimum culture medium was 2% fructose, 0.4% peptone with 0.6% yeast extract, 0.05% NaH2PO4, and 0.05% MgSO4·7H2O as carbon, nitrogen, phosphorus, and inorganic salt sources, respectively. Several aromatic compounds in the medium enhanced laccase activity to varying degrees. Guaiacol induced maximum laccase production, yielding 114.1 U/ml laccase activity after cultivation for 11 days at 25℃. The optimum pH and temperature for laccase production were 8.0 and 35℃, respectively. Native polyacrylamide-gel electrophoresis (PAGE) followed by laccase-activity staining with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) as the substrate was performed to identify the presence of laccase under the optimum conditions studied. Zymogram analysis of the supernatant culture showed an enzymatic band with a molecular mass of about 90 kDa.

A Study on the Water Gas Shift Reaction of RPF Syngas (RPF(Refuse plastic fuel) 합성가스의 수성가스 전환 반응 연구)

  • Roh, Seon Ah
    • Resources Recycling
    • /
    • v.30 no.6
    • /
    • pp.12-18
    • /
    • 2021
  • The water-gas shift reaction is the subsequent step using steam for hydrogen enrichment and H2/CO ratio-controlled syngas from gasification. In this study, a water-gas shift reaction was performed using syngas from an RPF gasification system. The water-gas shift using a catalyst was performed in a laboratory-scale tube reactor with a high temperature shift (HTS) and a low temperature shift (LTS). The effects of the reaction temperature, steam/carbon ratio, and flow rate on H2 production and CO conversion were investigated. The operating temperature was 250-400℃ for the HTS system and 190-220℃ for the LTS system. Steam/carbon ratios were between 1.5 and 3.5, and the composition of reactant was CO : 40 vol%, H2 : 25 vol%, and CO2 : 25 vol%. The CO conversion and H2 production increased as the reaction temperature and steam/carbon ratio increased. The CO conversion and H2 production decreased as the flow rate increased due to reduced retention time in the catalyst bed.

Two-step thermochemical cycles for hydrogen production using NiFe2O4/m-ZrO2 and CeO2 devices (NiFe2O4/m-ZrO2와 CeO2를 이용한 고온 태양열 열화학 싸이클의 수소 생산)

  • Kim, Chul-Sook;Cho, Ji-Hyun;Kim, Dong-Yeon;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.2
    • /
    • pp.93-100
    • /
    • 2013
  • Two-step thermochemical cycle using ferrite-oxide($Fe_2O_4$) device was investigated. The $H_2O$(g) was converted into $H_2$ in the first experiment which was performed using a dish type solar thermal system. However the experiment was lasted only for 2 cycles because the metal oxide device was sintered and broken down. Another problem was that the reaction was taken place mainly on a side of the metal oxide device. The m-$ZrO_2$, which was widely known as a material preventing sintering, was applied on the metal oxide device. The ferrite loading rate and the thickness of the metal oxide device were increased from 10.67wt% to 20wt% and from 10mm to 15mm, respectively. The chemical reactor having two inlets was designed in order to supply the reactants uniformly to the metal oxide device. The second-experiment was lasted for 5 cycles, which was for 6 hours. The total amount of the $H_2$ production was 861.30ml. And cerium oxide($CeO_2$) device was used for increasing $H_2$ production rate. $CeO_2$ device had low thermal resistance, however, more $H_2$ production rate than $Fe_2O_4$ device.

CO2 Reduction and C2H4 Production Using Nanostructured Gallium Oxide Photocatalyst (산화갈륨 나노구조 광촉매 특성을 이용한 이산화탄소 저감 및 에틸렌 생성 작용)

  • Seo, Dahee;Ryou, Heejoong;Seo, Jong Hyun;Hwang, Wan Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.3
    • /
    • pp.308-310
    • /
    • 2022
  • Ultrawide bandgap gallium oxide (Ga2O3) semiconductors are known to have excellent photocatalytic properties due to their high redox potential. In this study, CO2 reduction is demonstrated using nanostructured Ga2O3 photocatalyst under ultraviolet (254 nm) light source conditions. After the CO2 reduction, C2H4 remained as a by-product in this work. Nanostructured Ga2O3 photocatalyst also showed an excellent endurance characteristic. Photogenerated electron-hole pairs boosted the CO2 reduction to C2H4 via nanostructured Ga2O3 photocatalyst, which is attributed to the ultrawide and almost direct bandgap characteristics of the gallium oxide semiconductor. The findings in this work could expedite the realization of CO2 reduction and a simultaneous C2H4 production using a low cost and high performance photocatalyst.

- Invited Review - Hydrogen production and hydrogen utilization in the rumen: key to mitigating enteric methane production

  • Roderick I. Mackie;Hyewon Kim;Na Kyung Kim;Isaac Cann
    • Animal Bioscience
    • /
    • v.37 no.2_spc
    • /
    • pp.323-336
    • /
    • 2024
  • Molecular hydrogen (H2) and formate (HCOO-) are metabolic end products of many primary fermenters in the rumen ecosystem. Both play a vital role in fermentation where they are electron sinks for individual microbes in an anaerobic environment that lacks external electron acceptors. If H2 and/or formate accumulate within the rumen, the ability of primary fermenters to regenerate electron carriers may be inhibited and microbial metabolism and growth disrupted. Consequently, H2- and/or formate-consuming microbes such as methanogens and possibly homoacetogens play a key role in maintaining the metabolic efficiency of primary fermenters. There is increasing interest in identifying approaches to manipulate the rumen ecosystem for the benefit of the host and the environment. As H2 and formate are important mediators of interspecies interactions, an understanding of their production and utilization could be a significant starting point for the development of successful interventions aimed at redirecting electron flow and reducing methane emissions. We conclude by discussing in brief ruminant methane mitigation approaches as a model to help understand the fate of H2 and formate in the rumen ecosystem.

Syngas Production Based on Co-electrolysis of CO2 and H2O in Solid Oxide Electrolysis Cell (고체 산화물 CO2-H2O 공전해 기반 합성가스 생산 기술 )

  • NAMGI JEON;SANGHYEOK LEE;SANGKUK KIM;CHIKYU AHN;JIN SOO AHN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.2
    • /
    • pp.140-145
    • /
    • 2024
  • High temperature co-electrolysis of H2O-CO2 mixtures using solid oxide cells has attracted attention as promising CO2 utilization technology for production of syngas (H2/CO), feedstock for E-fuel synthesis. For direct supply to E-fuel production such as hydrocarbon and methanol, the outlet gas ratio (H2/CO/CO2) of co-electrolysis should be controlled. In this work, current voltage characteristic test and product gas analysis were carried out under various reaction conditions which could attain proper syngas ratio.