• Title/Summary/Keyword: H/sub ∞/ control

Search Result 793, Processing Time 0.029 seconds

Physicochemical properties and shelf-life of low-fat pork sausages wrapped with active film manufactured by sodium alginate and cherry tomato powder

  • Qiu, Zhuang Zhuang;Chin, Koo Bok
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.9
    • /
    • pp.1470-1476
    • /
    • 2020
  • Objective: This study was carried out to investigate physicochemical properties, and antioxidant and antimicrobial activities of low-fat sausages (LFSs) covered with sodium alginate (SA) film alone and with powder film (TSA-film) formed by cross-linking cherry tomato powder (CTP) and SA with calcium chloride (CaCl2). Methods: Sausages covered with the biodegradable film were assessed based on the measurement of pH, color (L, a, b), proximate analysis, expressive moisture (EM), texture profile analysis, total plate counts (TPC), violet red bile, and 2-Thiobarbituric acid reactive substances (TBARS) during storage under refrigeration. LFSs wrapped with TSA-film were compared with those wrapped with SA-film and without film (control) during storage at 10℃ for 35 days. Results: The LFSs covered with the mixed film had lower pH, lightness (L), EM%, TBARS, and TPC, but lower yellowness (b) and hardness values than those wrapped with TSA-film alone. Conclusion: Lipid oxidation and microbial growth was retarded in sausages covered with biodegradable films, especially multiple films as compared to single film, thereby resulting in extended shelf-life of the LFSs.

Separation of Selenite from Inorganic Selenium Ions using TiO2 Magnetic Nanoparticles

  • Kim, Jongmin;Lim, H.B.
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3362-3366
    • /
    • 2013
  • A simple and quick separation technique for selenite in natural water was developed using $TiO_2$@$SiO_2/Fe_3O_4$ nanoparticles. For the synthesis of nanoparticles, a polymer-assisted sol-gel method using hydroxypropyl cellulose (HPC) was developed to control particle dispersion in the synthetic procedure. In addition, titanium butoxide (TBT) precursor, instead of the typical titanium tetra isopropoxide, was used for the formation of the $TiO_2$ shell. The synthesized nanoparticles were used to separate selenite ($Se^{4+}$) in the presence of $Se^{6+}$ or selenium anions for the photocatalytic reduction to $Se^0$ atom on the $TiO_2$ shell, followed by magnetic separation using $Fe_3O_4$ nanoparticles. The reduction efficiency of the photocatalytic reaction was 81.4% at a UV power of 6W for 3 h with a dark adsorption of 17.5% to the nanoparticles, as determined by inductively coupled plasma-mass spectrometry (ICP-MS). The developed separation method can be used for the speciation and preconcentration of selenium cations in environmental and biological analysis.

Plasma Etching Process based on Real-time Monitoring of Radical Density and Substrate Temperature

  • Takeda, K.;Fukunaga, Y.;Tsutsumi, T.;Ishikawa, K.;Kondo, H.;Sekine, M.;Hori, M.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.93-93
    • /
    • 2016
  • Large scale integrated circuits (LSIs) has been improved by the shrinkage of the circuit dimensions. The smaller chip sizes and increase in circuit density require the miniaturization of the line-width and space between metal interconnections. Therefore, an extreme precise control of the critical dimension and pattern profile is necessary to fabricate next generation nano-electronics devices. The pattern profile control of plasma etching with an accuracy of sub-nanometer must be achieved. To realize the etching process which achieves the problem, understanding of the etching mechanism and precise control of the process based on the real-time monitoring of internal plasma parameters such as etching species density, surface temperature of substrate, etc. are very important. For instance, it is known that the etched profiles of organic low dielectric (low-k) films are sensitive to the substrate temperature and density ratio of H and N atoms in the H2/N2 plasma [1]. In this study, we introduced a feedback control of actual substrate temperature and radical density ratio monitored in real time. And then the dependence of etch rates and profiles of organic films have been evaluated based on the substrate temperatures. In this study, organic low-k films were etched by a dual frequency capacitively coupled plasma employing the mixture of H2/N2 gases. A 100-MHz power was supplied to an upper electrode for plasma generation. The Si substrate was electrostatically chucked to a lower electrode biased by supplying a 2-MHz power. To investigate the effects of H and N radical on the etching profile of organic low-k films, absolute H and N atom densities were measured by vacuum ultraviolet absorption spectroscopy [2]. Moreover, using the optical fiber-type low-coherence interferometer [3], substrate temperature has been measured in real time during etching process. From the measurement results, the temperature raised rapidly just after plasma ignition and was gradually saturated. The temporal change of substrate temperature is a crucial issue to control of surface reactions of reactive species. Therefore, by the intervals of on-off of the plasma discharge, the substrate temperature was maintained within ${\pm}1.5^{\circ}C$ from the set value. As a result, the temperatures were kept within $3^{\circ}C$ during the etching process. Then, we etched organic films with line-and-space pattern using this system. The cross-sections of the organic films etched for 50 s with the substrate temperatures at $20^{\circ}C$ and $100^{\circ}C$ were observed by SEM. From the results, they were different in the sidewall profile. It suggests that the reactions on the sidewalls changed according to the substrate temperature. The precise substrate temperature control method with real-time temperature monitoring and intermittent plasma generation was suggested to contribute on realization of fine pattern etching.

  • PDF

Analysis of the Long-Range Transport Contribution to PM10 in Korea Based on the Variations of Anthropogenic Emissions in East Asia using WRF-Chem (WRF-Chem 모델을 활용한 동아시아의 인위적 배출량 변동에 따른 한국 미세 먼지 장거리 수송 기여도 분석)

  • Lee, Hyae-Jin;Cho, Jae-Hee
    • Journal of the Korean earth science society
    • /
    • v.43 no.2
    • /
    • pp.283-302
    • /
    • 2022
  • Despite the nationwide COVID-19 lockdown in China since January 23, 2020, haze days with high PM10 levels of 88-98 ㎍ m-3 occurred on February 1 and 2, 2020. During these haze days, the East Asian region was affected by a warm and stagnant air mass with positive air temperature anomalies and negative zonal wind anomalies at 850 hPa. The Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) was used to analyze the variation of regional PM10 aerosol transport in Korea due to decreased anthropogenic emissions in East Asia. The base experiment (BASE), which applies the basic anthropogenic emissions in the WRF-Chem model, and the control experiment (CTL) applied by reducing the anthropogenic emission to 50%, were used to assess uncertainty with ground-based PM10 measurements in Korea. The index of agreement (IOA) for the CTL simulation was 0.71, which was higher than that of BASE (0.67). A statistical analysis of the results suggests that anthropogenic emissions were reduced during the COVID-19 lockdown period in China. Furthermore, BASE and CTL applied to zero-out anthropogenic emissions outside Korea (BASE_ZEOK and CTL_ZEOK) were used to analyze the variations of regional PM10 aerosol transport in Korea. Regional PM10 transport in CTL was reduced by only 10-20% compared to BASE. Synthetic weather variables may be another reason for the non-linear response to changes in the contribution of regional transport to PM10 in Korea with the reduction of anthropogenic emissions in East Asia. Although the regional transport contribution of other inorganic aerosols was high in CTL (80-90%), sulfate-nitrate-ammonium (SNA) aerosols showed lower contributions of 0-20%, 30-60%, and 30-60%, respectively. The SNA secondary aerosols, particularly nitrates, presumably declined as the Chinese lockdown induced traffic.

Effects of Lonicera japonica extract on performance, blood biomarkers of inflammation and oxidative stress during perinatal period in dairy cows

  • Zhao, Yiguang;Tang, Zhiwen;Nan, Xuemei;Sun, Fuyu;Jiang, Linshu;Xiong, Benhai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.7
    • /
    • pp.1096-1102
    • /
    • 2020
  • Objective: An experiment was conducted to evaluate the effects of Lonicera japonica extract (LJE) on milk production, rumen fermentation and blood biomarkers of energy metabolism, inflammation and oxidative stress during the perinatal period of Holstein dairy cows. Methods: Eighteen Holstein dairy cows were used in a complete randomized design experiment with 3 dietary treatments and 6 cows per treatment. All cows received the same basal total mixed ration (TMR) including a prepartal diet (1.35 Mcal of net energy for lactation [NEL]/kg of dry matter [DM], 13.23% crude protein [CP]) from -60 d to calving and a postpartal diet (1.61 Mcal of NEL/kg of DM, 17.39% CP) from calving to 30 days in milk (DIM). The 3 dietary treatments were TMR supplemented with LJE at 0 (control), 1 and 2 g/kg DM, respectively. LJE was offered from 21 d before calving to 30 DIM. Dry matter intake (DMI) and milk production were measured daily after calving. Milk and rumen fluid samples were collected on 29 and 30 d after calving. On -10, 4, 14, and 30 d relative to calving, blood samples were collected to analyze the biomarkers of energy metabolism, inflammation and oxidative stress. Results: Compared with control diet, LJE supplementation at 1 and 2 g/kg DM increased DMI, milk yield and reduced milk somatic cell count. LJE supplementation also decreased the concentrations of blood biomarkers of pro-inflammation (interleukin-1β [IL-1β], IL-6, and haptoglobin), energy metabolism (nonesterified fatty acid and β-hydroxybutyric acid) and oxidative stress (reactive oxygen metabolites), meanwhile increased the total antioxidant capacity and superoxide dismutase concentrations in blood. No differences were observed in rumen pH, volatile fatty acid, and ammonia-N (NH3-N) concentrations between LJE supplemented diets and the control diet. Conclusion: Supplementation with 1 and 2 g LJE/kg DM could increase DMI, improve lactation performance, and enhance anti-inflammatory and antioxidant capacities of dairy cows during perinatal period.

Control of Connectivity of Ni Electrode with Heating Rates During Sintering and Electrical Properties in BaTiO3 Based Multilayer Ceramic Capacitors

  • Yoon, J.R.;Shin, D.S.;Jeong, D.Y.;Lee, H.Y.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.4
    • /
    • pp.181-184
    • /
    • 2012
  • $BaTiO_3$ based multilayer ceramic capacitors with Ni electrodes can be explained as 2-2 composites with different thermal expansion coefficient and sintering behaviors. To achieve the high capacitance and reliability of MLCCs, a homogenous Ni electrode configuration with high connectivity is required. We controlled the heating rates during sintering to achieve densification by suppressing grain growth. Experimental results revealed that a large heating rate gave high connectivity of Ni electrode, high capacitance, small dissipation factor, high breakdown voltage, and high reliability of MLCC chips.

Recent Developments in H2 Production Photoelectrochemical Electrode Materials by Atomic Layer Deposition (원자층증착법을 이용한 수소 생성용 광전기화학 전극 소재 개발 동향)

  • Han, Jeong Hwan
    • Journal of Powder Materials
    • /
    • v.25 no.1
    • /
    • pp.60-68
    • /
    • 2018
  • The design and fabrication of photoelectrochemical (PEC) electrodes for efficient water splitting is important for developing a sustainable hydrogen evolution system. Among various development approaches for PEC electrodes, the chemical vapor deposition method of atomic layer deposition (ALD), based on self-limiting surface reactions, has attracted attention because it allows precise thickness and composition control as well as conformal coating on various substrates. In this study, recent research progress in improving PEC performance using ALD coating methods is discussed, including 3D and heterojunction-structured PEC electrodes, ALD coatings of noble metals, and the use of sulfide materials as co-catalysts. The enhanced long-term stability of PEC cells by ALD-deposited protecting layers is also reviewed. ALD provides multiple routes to develop improved hydrogen evolution PEC cells.

N2O Decomposition Characteristics and Efficiency Enhancement of Rh/CeO2 Catalyst (Rh/CeO2 촉매의 N2O 분해반응 특성 및 효율증진 연구)

  • Nam, Ki Bok;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.29 no.5
    • /
    • pp.541-548
    • /
    • 2018
  • In this work, the $N_2O$ decomposition catalyst and reaction characteristics to control the $N_2O$ removal were described. Experiments were carried out by using Rh as an active metal catalyst on various supports and the $Rh/CeO_2$ catalyst with $CeO_2$ support showed the best activity for the $N_2O$ decomposition when it was prepared under the constant heat treatment condition ($500^{\circ}C$-4 hr). $H_2-TPR$ and XPS analyzes were performed to confirm the effect of the physical and chemical properties of the catalyst on $N_2O$ decomposition. As a result, it was found that the increase of the oxygen transfer capacity of the catalyst due to the increase of both the redox property and $Ce^{3+}$ amount affected the decomposition reaction of $N_2O$. In addition, the future work will include a treatment process capable of decomposition $N_2O$ and NO under the condition that $N_2O$ and NO are simultaneously generated and its characteristics of $N_2O$ decomposition reaction.

Study on the Effect of NH3-Selective Catalytic Reduction Efficiency according to Sb Calcination Temperature in V/Sb/TiO2 Catalyst (V/Sb/TiO2 촉매에서 Sb 소성온도에 따른 NH3-SCR 효율 영향 연구)

  • Choi, Gyeong Ryun;Yeo, Jong Hyeon;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.31 no.6
    • /
    • pp.646-652
    • /
    • 2020
  • In this study, an NH3-selective catalytic reduction (SCR) experiment was performed to control NOx in the temperature range of 200~500 ℃. The reaction activity experiment was conducted by varying the firing temperature of Sb/TiO2 when using V/Sb/TiO2 composite as a catalyst. As a result, when the sintering temperature of Sb/TiO2 was 600 ℃, the efficiency was the best, and it was confirmed that the NOx conversion rate was close to 80% at the reaction temperature of 250 ℃. H2-temperature programmed reduction (TPR), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) analyses were employed to derive the cause of the activity enhancement when prepared at different firing temperatures as described above. As a result, when the sintering temperature of Sb/TiO2, which showed an excellent activity, was prepared at 600 ℃, it was confirmed that VSbO4 was generated. This indicates that the non-stoichiometric species of V increased, resulting in the excellent NOx conversion rate of V/Sb/TiO2.

Anti-inflammatory Effect of Morinda citrifolia on LPS-induced Inflammation in RAW 264.7 Cells Through the JAK/STAT Signaling Pathway (JAK/STAT 신호전달 경로를 통한 LPS 유도 RAW 264.7 세포의 염증에 대한 노니의 항염증 효과)

  • Jo, Beom Gil;Bang, In Seok
    • Journal of Life Science
    • /
    • v.32 no.2
    • /
    • pp.125-134
    • /
    • 2022
  • This study investigated whether or not the major bioactive compounds of Noni (Morinda citrifolia) are involved in anti-inflammatory activity through the JAK/STAT upper signaling pathway in RAW 264.7 cells. The experimental results show that the M. citrifolia ethyl acetate fraction (Mc-EtOAc) obtained by sequential fractionation with organic solvents from the plant's dried fruits exhibits the highest antioxidant activity. In addition, the cytoprotective effects of Mc-EtOAc against H2O2-induced oxidative stress in the RAW 264.7 cells suppressed cytotoxicity in a dose-dependent manner. The group pretreated with Mc-EtOAc at a concentration of 240 ㎍/ml showed higher cell viability of 84.5%, compared to 71.6% in the LPS-treated group, and LPS-induced NO production decreased to half the amount in the positive control group. Mc-EtOAc treatment also led to a significant dose-dependent reduction in iNOS expression. Although COX-2 expression was increased by 300% following LPS induction, it was significantly decreased in a dose-dependent manner by pretreatment with Mc-EtOAc at concentrations of 120 and 240 ㎍/ml. An inhibition of the mRNA expression of pro-inflammatory cytokines IL-1β and TNF-α was observed. The investigation also revealed that the phosphorylation levels of pJAK1 and pSTAT3 in LPS-induced RAW 264.7 cells were significantly reduced by Mc-EtOAc treatment.