• Title/Summary/Keyword: H&R

Search Result 14,137, Processing Time 0.049 seconds

Platinum(Ⅱ) Complexes of 2,2$^\prime$-Diaminobinaphthyl

  • Jun Moo-Jin;Choi Sung Rack
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.4
    • /
    • pp.214-217
    • /
    • 1985
  • Platinum(II) complexes of R-2,2'-diaminobinaphthyl (R-dabn), [Pt(R-dabn)(H2O)2]Cl2, [Pt(R-dabn)(R-Pn)]Cl2, [Pt(R-dabn)(R-bn)]Cl2, and platinum(II) complexes of S-2,2'-diaminobinaphthyl (S-dabn), [Pt(S-dabn)(H2O)2]Cl2, [Pt(S-dabn)(S-Pn)]Cl2, and [(Pt(S-dabn)(S-bn)]Cl2 have been prepared. (R-Pn and S-Pn are, respectively R- and S isomer of 2,3-diaminobutane). R-Pn and S-bn are, respectively R and S isomer of 2,3-diaminopropane). In the vicinity of the B-absorption band region of dabn, the circular dichroism spectra of platinum(Ⅱ) complexes of R-dabn series show a positive B-band followed by a negative higher energy A-band, which is generally understood as the splitting pattern for a ${\lambda}$ conformation, while the circular dichroism spectra of platinum(Ⅱ) complexes of S-dabn series show a negative B-band followed by a positive higher energy A-band in the long-axis polarized absorption region as expected for a $\delta$ conformation.

Hydrogen Production and Organic Removal according to Mixture Ratio of Food Wastewater and Swine Wastewater using Anaerobic Batch Reactor (회분식 혐기성 소화 반응기에서 음식물탈리액과 양돈폐수의 혼합비에 따른 수소 생산 및 유기물 제거)

  • Kim, Choong-Gon;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.5
    • /
    • pp.641-647
    • /
    • 2007
  • This study aims to find out optimum condition for hydrogen production and organic removal when treating food and swine wastewater together. For this purpose, various batch tests were conducted by changing mixture ratio from 6:4 (food wastewater:swine wastewater) to 1:9 without pretreatment process. For hydrogen production through anaerobic fermentation, the mixture ratios of R-1 (6:4), R-2 (5:5) and R-6 (1:9) were out of pH range appropriate for hydrogen production and mixture ratios of R-3 (4:6), R-4 (3:7), and R-5(2:8) showed appropriate hydrogen production where their pH ranges were 5.1~5.5. Especially in case of R-3, it consistently maintained appropriate pH range for hydrogen production for 72hr and produced maximum hydrogen. The characteristics of hydrogen production and cumulative hydrogen production according to each mixture ratio showed that R-1, R-2 and R-6 did not produce any hydrogen, and maximum hydrogen productions of R-3, R-4 and R-5 were 593ml, 419ml and 90ml, respectively. Total cumulative hydrogen productions of R-3, R-4 and R-5 were 1690ml, 425ml and 96ml, respectively. Based on previous results, it was concluded that, the most appropriate mixture ratio of food wastewater and swine wastewate rwas 4:6 (R-3). The experiment for COD removal rate to evaluate organic removal efficiency revealed that R-3, R-4 and R-5 showed high removal efficiencies during the highest hydrogen production amount and the highest efficiency was 41% with R-3.