• Title/Summary/Keyword: Gyroscopic effect

Search Result 53, Processing Time 0.017 seconds

Optimal Design of Magnetically Levitated Flywheel Energy Storage System Based on System Stability Using Rigid-Body Model (강체모델 기반 시스템 안정성을 고려한 자기부상 플라이휠 에너지 저장장치의 최적 설계)

  • Kim, Jung-Wan;Yoo, Seong-Yeol;Bae, Yong-Chae;Noh, Myoung-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.283-289
    • /
    • 2010
  • Owing to the increasing worldwide interest in green technology and renewable energy sources, flywheel energy storage systems (FESSs) are gaining importance as a viable alternative to traditional battery systems. Since the energy storage capacity of an FESS is proportional to the principal mass-moment of inertia and the square of the running speed, a design that maximizes the principal inertia while operatingrunning at the highest possible speed is important. However, the requirements for the stability of the system may impose a constraint on the optimal design. In this paper, an optimal design of an FESS that not only maximizes the energy capacity but also satisfies the requirements for system stability and reduces the sensitivity to external disturbances is proposed. Cross feedback control in combination with a conventional proportional-derivative (PD) controller is essential to reduce the effect of gyroscopic coupling and to increase the stored energy and the specific energy density.

Rotordynamic Analyses of a Composite Roller for Large LCD Panel Manufacturing (대형 LCD 패널 제조용 복합재 롤러의 회전체 동역학 해석)

  • Park, Hyo-Keun;Choi, Jin-Ho;Kweon, Jin-Hwe;Lee, Young-Hwan;Yang, Seung-Un;Kim, Dong-Hyun
    • Composites Research
    • /
    • v.19 no.6
    • /
    • pp.8-15
    • /
    • 2006
  • In this study, computational rotor dynamic analyses of a composite roller used for large LCD panel manufacturing process have been conducted. The present computational method is based on the general finite element method with rotating gyroscopic effects of rotor systems. General purpose commercial finite element code, SAMCEF which has special rotordynamics analysis module is applied. For the purpose of numerical verification, comparison study for a benchmark dual rotor model with support bearings is also presented. Detailed finite element models for composite roller with optimized lamination angles are constructed and analyzed considering gravity effect in order to investigate vibration characteristics in actual operation environment. As results of the present study, rotor stability diagrams and mass unbalance responses are presented for different rotating conditions.

A Study to Improve the Performance of a Fixd Type Fin Stabilizer with Coanda Effect (콴다효과를 적용한 고정식 핀 안정기의 성능개선에 관한 연구)

  • Seo, Dae-Won;Lee, Se-Jin;Lee, Seung-Hee
    • Journal of Navigation and Port Research
    • /
    • v.37 no.3
    • /
    • pp.257-262
    • /
    • 2013
  • A ship operating in rough sea may suffer from an undesirable motion which may severely degrade the performance of equipment onboard and give a person an uncomfortable feeling. Hence, roll stabilization received a considerable attention and various devices including bilge keels, stabilizing fins, gyroscopic, anti-rolling tanks, rudders and flaps have been conceived and utilized for the purpose. The Coanda effect is evident when a jet stream is applied tangential to a curved surface of a hydrofoil since then the jet increases the circulation around the foil and consequently the lift. Model tests and numerical simulation have been conducted to examine the practicality of a fixed type fin stabilizer augmented by the Coanda jet. The results show that the lift coefficient of the modified Coanda fin at the zero angle of attack identically coincides with that of the original fin at ${\alpha}=\26^{\circ}$ when Coanda jet is supplied at the rate of $C_j$ = 0.25. It is also shown that fixed type fin stabilizers for active control of the motions of ships and the other mobile units without rotation can be put to practical use if the Coanda effect is applied.