• Title/Summary/Keyword: Gyro misalignment

Search Result 12, Processing Time 0.022 seconds

A Compensator to Advance Gyro-Free INS Precision

  • Hung Chao-Yu;Fang Chun-Min;Lee Sou-Chen
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.3
    • /
    • pp.351-358
    • /
    • 2006
  • The proposed inertial measurement unit (IMU) is composed of accelerometers only. It can determine a vehicle's position and attitude, which is the Gyro-free INS. The Gyro-free INS error is deeply affected by the sensor bias, scale factor and misalignment. However, these parameters can be obtained in the laboratory. After these misalignments are corrected, the Gyro-free strap-down INS could be more accurate. This paper presents a compensator design for the strap-down six-accelerometer INS to correct misalignment. A calibration experiment is taken to get the error parameters. A simulation results show that it will decrease the INS error to enhance the performance after compensation.

Performance improvement of SDINS attitude error estimation using GPS for bank-to-turn flight vehicle (뱅크턴하는 항체에 대한 GPS를 이용한 SDINS의 자세 오차 추정 향상)

  • Yu, Hae-Sung;Yoo, Ki-Jeong;Kim, Hyun-Seok;Lee, Youn-Seon;Park, Heung-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.2
    • /
    • pp.128-136
    • /
    • 2011
  • An approach to improve the performance of SDINS and GPS integrated system for bank-to-turn flight vehicles is described. Then, it is shown through the simulation that a specific gyro misalignment error results in an increased heading error of SDINS. A new modelling method is presented herein for identifying of sensor and attitude error. The main advantage of the proposed method is that it not only estimates the gyro misalignment error of SDINS, but also improves estimate performance of heading error of SDINS in the presence of the gyro misalignments.

Compensation of Pseudo Gyro Bias in SDINS (SDINS에서 의사 자이로 바이어스 보상 기법)

  • Jungmin Park
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.2
    • /
    • pp.179-187
    • /
    • 2024
  • The performance of a Strapdown Inertial Navigation System (SDINS) relies heavily on the accuracy of sensor error calibration. Systematic calibration is usually employed when only a 2-axis turntable is available. For systematic calibration, the body frame is commonly defined with respect to sensor axes for ease of computation. The drawback of this approach is that sensor axes may undergo time-varying deflection under temperature change, causing pseudo gyro bias. The effect of pseudo gyro bias on navigation performance is negligible for low grade navigation systems. However, for higher grade systems undergoing rapid temperature change, the error is no longer negligible. This paper describes in detail conditions leading to the presence of pseudo gyro bias, and proposes two techniques for mitigating the error. Experimental results show that applying these techniques improves navigation performance for precision SDINS, especially under rapid temperature change.

A study of observability enhancement by matching methods at sea (혼합정합 전달정렬시 해상항체의 가관측성 향상조건에 관한 연구)

  • 김경주;고영웅;박찬웅
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.867-870
    • /
    • 1996
  • Often an INS has to be aligned in navigation. In these cases it is necessary to obtain some reference information on the state of the aligned INS(Slave) such as its position, its velocity of its angular rate. Usually the reference information is velocity which is supplied by another reference INS. In the alignment state the velocity computed by the reference INS(Master) is compared with that computed by the slave INS and the difference which is indicative of the slave misalignment with respect to the master, is processed by a Kalman filter which estimates misalignment as well as the slave gyro and accelerometer error states. The operation of aligning a slave INS with a master INS comparing quantities computed by both INS is known as transfer alignment. The delivery vehicle performs error these maneuvers enable the TA Kalman filter to separate between the tilt errors and the accelerometer biases which otherwise are unobservable. The basic objective this paper is to study the observability enhancement by ship's maneuvering and matching methods during transfer alignment at sea.

  • PDF

DEVELOPMENT OF PRECISION ATTITUDE DETERMINATION SYSTEM FOR KOMPSAT-2

  • Yoon Jae-Cheol;Shin Dongseok;Lee Hungu;Lee Young-Ran;Lee Hyunjae;Bang Hyo-Choong;Cheon Yee-Jin;Shin Jae-Min;Moon Hong-Youl;Lee Sang-Ryool;Jeun Gab-Ho
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.296-299
    • /
    • 2004
  • KARI precision attitude determination system has been developed for high accurate geo-coding of KOMPSAT-2 image. Sensor data from two star trackers and a IRU are used as measurement and dynamic data. Sensor data from star tracker are composed of QUEST and unit vector filter. Filter algorithms consists of extended Kalman filter, unscented Kalman filter, and least square batch filter. The type of sensor data and filter algorithm can be chosen by user options. Estimated parameters are Euler angle from 12000 frame to optical bench frame, gyro drift rate bias, gyro scale factor, misalignment angle of star tracker coordinate frame with respect to optical bench frame, and misalignment angle of gyro coordinate frame with respect to optical bench frame. In particular, ground control point data can be applied for estimating misalignment angle of star tracker coordinate frame. Through the simulation, KPADS is able to satisfy the KOMPSAT-2 mission requirement in which geo-location accuracy of image is 80 m (CE90) without ground control point.

  • PDF

The Implementation of Tightly coupled SDINS/GPS System based on the Ring Laser Gyro (링레이저 자이로 기반 관성항법장치와 위성항법장치의 강결합 방식 시스템 구현)

  • Yu, Haesung;Park, Sang Eun;Jeong, Jinseob;Park, Heung-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.2
    • /
    • pp.134-141
    • /
    • 2013
  • This paper explores a real-time system implementation to couple tightly StrapDown Inertial Navigation System(SDINS) and Global Positioning System(GPS) mounted on the aircraft. When implementing the SDINS/GPS coupled system in real-time processor, we have to deliberate SDINS's unique characteristics based on the ring laser gyro, and besides, lever-arm, measurements, and error compensation method. The novel modeling method is applied to system the misalignment error term of gyro to estimate the cumulative heading attitude errors while the aircraft banking to turn repeatedly. Captive Flight Test results show that the proposed modeling strategy has good performance.

Alignment error analysis of KAL KE007 inertial navigation system

  • Park, Chan-Ung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.564-566
    • /
    • 1992
  • It is tragic that the Korean Airline Boing 747, KE007, wandered hundreds of miles off course into Soviet airspace and was shot down on September 1, 1983. The exact cuases are not known yet. Thus, speculation centers on human error or faulty procedure of three Litton LTN-72R inertial navigation systems(INS) with which the KAL KE007 was equipped. The inertial platform must be aligned before the INS can be used as a precision inertial navigation system. This analysis checks a possibility that the navigation errors are caused by a wrong INS alignment procedure assuming it is done at Anchorage. Possible causes for the navigational position error, such as alignment errors and gyro drift errors, are analyzed through inertial navigation system error prapagation simulations. A set of misalignment angle is estimated to determine what degree of alignment errors are required to cause the navigation error assuming that the accident is caused by the INS misalignment.

  • PDF

A New Approach for SINS Stationary Self-alignment Based on IMU Measurement

  • Zhou, Jiangbin;Yuan, Jianping;Yue, Xiaokui
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.355-359
    • /
    • 2006
  • For the poor observability of azimuth misalignment angle and east gyro drift rate of the traditional initial alignment, a bran-new SINS stationary fast self-alignment approach is proposed. By means of analyzing the characteristic of the strapdown inertial navigation system (SINS) stationary alignment seriously, the new approach takes full advantage of the specific force and angular velocity information given by inertial measurement unit (IMU) instead of the mechanization of SINS. Firstly, coarse alignment algorithm is presented. Secondly, a new fine alignment model for SINS stationary self-alignment is derived, and the observability of the model is analysed. Then, a modified Sage-Husa adaptive Kalman filter is introduced to estimate the misalignment angles. Finally, some computer simulation results illustrate the efficiency of the new approach and its advantages, such as higher alignment accuracy, shorter alignment time, more self-contained and less calculation.

  • PDF

Compensation for the Body-Coupling in the 2-Gimballed Seeker Homing Loop on BTT Missile

  • Sangkeun Jeong;Kim, Eulgon;Chanho Song;Hangju Cho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.156.1-156
    • /
    • 2001
  • It is observed that if the 2-gimballed seeker is stabilized using rate gyros mounted along its primary axis, line of sight change measured in the seeker is induced by the rolling due to the bank-to-turn(BTT) steering as well as the actual change. This body-coupling within BTT homing includes the spurious target maneuver effect and the coupling loop due to the rate gyro misalignment. In this paper we formulates the linear BTT homing loop model with a 2-gimballed seeker including those body-coupling effects. With the model, we analyze the effects of the couplings, and show that the roll rate coupling to the rate gyro for the stabilztion of gimbal could seriously deteriorate the homing loop stability. And we propose a direct linear compensator for the coupling to recover the stability.

  • PDF

AOCS On-orbit Calibration for High Agility Imaging LEO Satellite (고기동 영상촬영 저궤도 위성 자세제어계 궤도상 보정)

  • Yoon, Hyungjoo;Park, Keun Joo;Yim, Jo Ryeong;Choi, Hong-Taek;Seo, Doo Chun
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.80-86
    • /
    • 2012
  • A fast maneuvering LEO satellite producing high resolution images was developed by Korea Aerospace Research Institute and launched successfully. To achieve accurate pointing and stringent pointing stability, the attitude orbit control subsystem implements high performance star trackers and gyroscopes. In addition, series of on-orbit calibration need to be performed to compensate mainly misalignment errors due to launch shock and on-orbit thermal environment. In this paper, the on-orbit calibration approach is described with the performance enhancement result through flight data analysis.