• Title/Summary/Keyword: Gut Microbiota

Search Result 310, Processing Time 0.024 seconds

The Role of Meat Protein in Generation of Oxidative Stress and Pathophysiology of Metabolic Syndromes

  • Ahmad, Muhammad Ijaz;Ijaz, Muhammad Umair;Haq, Ijaz ul;Li, Chunbao
    • Food Science of Animal Resources
    • /
    • v.40 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • Various processing methods have a great impact on the physiochemical and nutritional properties of meat that are of health concern. Hence, the postmortem processing of meat by different methods is likely to intensify the potential effects on protein oxidation. The influence of meat protein oxidation on the modulation of the systemic redox status and underlying mechanism is well known. However, the effects of processed meat proteins isolated from different sources on gut microbiota, oxidative stress biomarkers, and metabolomic markers associated with metabolic syndromes are of growing interest. The application of advanced methodological approaches based on OMICS, and mass spectrometric technologies has enabled to better understand the molecular basis of the effect of processed meat oxidation on human health and the aging process. Animal studies indicate the involvement of dietary proteins isolated from different sources on health disorders, which emphasizes the impact of processed meat protein on the richness of bacterial taxa such as (Mucispirillum, Oscillibacter), accompanied by increased expression of lipogenic genes. This review explores the most recent evidences on meat processing techniques, meat protein oxidation, underlying mechanisms, and their potential effects on nutritional value, gut microbiota composition and possible implications on human health.

Benefits of procyanidins on gut microbiota in Bama minipigs and implications in replacing antibiotics

  • Zhao, Tingting;Shen, Xiaojuan;Dai, Chang;Cui, Li
    • Journal of Veterinary Science
    • /
    • v.19 no.6
    • /
    • pp.798-807
    • /
    • 2018
  • Several studies have reported the effect of absorption of procyanidins and their contribution to the small intestine. However, differences between dietary interventions of procyanidins and interventions via antibiotic feeding in pigs are rarely reported. Following 16S rRNA gene Illumina MiSeq sequencing, we observed that both procyanidin administration for 2 months (procyanidin-1 group) and continuous antibiotic feeding for 1 month followed by procyanidin for 1 month (procyanidin-2 group) increased the number of operational taxonomic units, as well as the Chao 1 and ACE indices, compared to those in pigs undergoing antibiotic administration for 2 months (antibiotic group). The genera Fibrobacter and Spirochaete were more abundant in the antibiotic group than in the procyanidin-1 and procyanidin-2 groups. Principal component analysis revealed clear separations among the three groups. Additionally, using the online Molecular Ecological Network Analyses pipeline, three co-occurrence networks were constructed; Lactobacillus was in a co-occurrence relationship with Trichococcus and Desulfovibrio and a co-exclusion relationship with Bacillus and Spharerochaeta. Furthermore, metabolic function analysis by phylogenetic investigation of communities by reconstruction of unobserved states demonstrated modulation of pathways involved in the metabolism of carbohydrates, amino acids, energy, and nucleotides. These data suggest that procyanidin influences the gut microbiota and the intestinal metabolic function to produce beneficial effects on metabolic homeostasis.

The Effect of Artificial Sweetener Use on Obesity (인공감미료 섭취가 비만에 미치는 영향)

  • Ju Sam Hwang
    • Archives of Obesity and Metabolism
    • /
    • v.2 no.2
    • /
    • pp.45-53
    • /
    • 2023
  • Despite the emergence of obesity as a significant public health concern, artificial sweeteners have made their way into various food products due to the perception, that they serve as substitutes for sugar. Artificial sweeteners are used to supposedly achieve weight management and health improvement. However, their efficacy and safety remain debatable. Commonly used artificial sweeteners include aspartame, acesulfame potassium, saccharin, and sucralose. This article discusses the effects of artificial sweetener consumption on weight loss, appetite regulation, blood glucose control, and gut microbiota. Research findings, concerning the consumption of artificial sweeteners and their association with body weight, have shown inconsistencies between randomized controlled trials and cohort studies. Studies, comparing artificial sweeteners to sugar, have reported no significant differences in satiety. Although artificial sweeteners have no calories, they can affect blood sugar levels through the cephalic phase insulin response. A recent study suggested that artificial sweeteners influenced the occurrence of diabetes. Due to limitations in the study design, excluding diabetes-influencing factors was not feasible. The evidence showed that artificial sweeteners harbored potential health risks, necessitating further investigation. According to recent studies, the consumption of artificial sweeteners was associated with gut microbiota changes and individual blood sugar responses. It is important to note that artificial sweeteners cannot be considered safe alternatives to sugar, and further research is required.

Effect of Probiotics Lactobacillus and Bifidobacterium on Gut-Derived Lipopolysaccharides and Inflammatory Cytokines: An In Vitro Study Using a Human Colonic Microbiota Model

  • Rodes, Laetitia;Khan, Afshan;Paul, Arghya;Coussa-Charley, Michael;Marinescu, Daniel;Tomaro-Duchesneau, Catherine;Shao, Wei;Kahouli, Imen;Prakash, Satya
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.4
    • /
    • pp.518-526
    • /
    • 2013
  • Gut-derived lipopolysaccharides (LPS) are critical to the development and progression of chronic low-grade inflammation and metabolic diseases. In this study, the effects of probiotics Lactobacillus and Bifidobacterium on gut-derived lipopolysaccharide and inflammatory cytokine concentrations were evaluated using a human colonic microbiota model. Lactobacillus reuteri, L. rhamnosus, L. plantarum, Bifidobacterium animalis, B. bifidum, B. longum, and B. longum subsp. infantis were identified from the literature for their anti-inflammatory potential. Each bacterial culture was administered daily to a human colonic microbiota model during 14 days. Colonic lipopolysaccharides, and Gram-positive and negative bacteria were quantified. RAW 264.7 macrophage cells were stimulated with supernatant from the human colonic microbiota model. Concentrations of TNF-${\alpha}$, IL-$1{\beta}$, and IL-4 cytokines were measured. Lipopolysaccharide concentrations were significantly reduced with the administration of B. bifidum ($-46.45{\pm}5.65%$), L. rhamnosus ($-30.40{\pm}5.08%$), B. longum ($-42.50{\pm}1.28%$), and B. longum subsp. infantis ($-68.85{\pm}5.32%$) (p < 0.05). Cell counts of Gram-negative and positive bacteria were distinctly affected by the probiotic administered. There was a probiotic strain-specific effect on immunomodulatory responses of RAW 264.7 macrophage cells. B. longum subsp. infantis demonstrated higher capacities to reduce TNF-${\alpha}$ concentrations ($-69.41{\pm}2.78%$; p < 0.05) and to increase IL-4 concentrations ($+16.50{\pm}0.59%$; p < 0.05). Colonic lipopolysaccharides were significantly correlated with TNF-${\alpha}$ and IL-$1{\beta}$ concentrations (p < 0.05). These findings suggest that specific probiotic bacteria, such as B. longum subsp. infantis, might decrease colonic lipopolysaccharide concentrations, which might reduce the proinflammatory tone. This study has noteworthy applications in the field of biotherapeutics for the prevention and/or treatment of inflammatory and metabolic diseases.

The Effect of Baekhogainsam-tang on Metabolism through Modulation of the Gut Microbiota and Gene Expression in High-Fat Diet Induced Metabolic Syndrome Animal Model (고지방식이로 유도된 대사증후군 모델 동물에서 백호가인삼탕(白虎加人參湯)의 장내미생물 및 유전자 발현 조절을 통한 대사 개선 효과)

  • Min-Jin Cho;Song-Yi Han;Soo Kyoung Lim;Eun-Ji Song;Young-Do Nam;Hojun Kim
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.33 no.3
    • /
    • pp.1-15
    • /
    • 2023
  • Objectives We aimed to find out the improvement effect of Baekhogainsam-tang (Baihu Jia Renshen-tang, BIT) on metabolic syndrome and alteration of microbiota and gene expression. Methods We used male C57BI/6 mice and randomly assigned them into three groups. Normal control group was fed 10% kcal% fat diet, high-fat diet (HFD) group was fed 45% kcal% fat diet and 10% fructose water. BIT group was fed same diet as HFD group and treated by BIT for once daily, 6 days per week, total 8 weeks. We measured their body weight and food intake every week and performed oral glucose tolerance test 1 week before the end of the study. Then we collected the blood sample to measure triglyceride, total cholesterol, high-density lipoprotein cholesterol, insulin, and hemoglobin A1c. We harvested tissue of liver, muscle, fat, and large intestine for quantitative polymerase chain reaction (qPCR) and histopathological examination. Fresh fecal samples were collected from each animal to verify alterations of gut microbiota and we used RNA from liver tissue for microarray analysis. Results The body weight and fat weight of BIT group were reduced compared to HFD group. The qPCR markers usually up-regulated in metabolic syndrome were decreased in BIT group. Bacteroides were higher in BIT group than other groups. There were also differences in gene expressions between two groups such as Cyp3a11 and Scd1. Conclusions We could find out BIT can ameliorate metabolic syndrome and suggest its effect is related to gut microbiota composition and gene expression pattern.

Failure of Fecal Microbiota Transplantation in a Three-Year-Old Child with Severe Refractory Ulcerative Colitis

  • Kumagai, Hideki;Yokoyama, Koji;Imagawa, Tomoyuki;Inoue, Shun;Tulyeu, Janyerkye;Tanaka, Mamoru;Yamagata, Takanori
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.19 no.3
    • /
    • pp.214-220
    • /
    • 2016
  • Fecal microbiota transplantation (FMT) is a treatment designed to correct gut dysbiosis by administration of feces from a healthy volunteer. It is still unclear whether FMT for children with ulcerative colitis (UC) is effective or hazardous. Here we describe a young patient to have received FMT for UC. A three-year-old girl was admitted to our hospital with severe active UC, and treated with aminosalicylates and various immunosuppressive drugs. As remission was not achieved, we decided to try FMT before colectomy. We administered donor fecal material a total of six times by retention enema (${\times}2$) and via a nasoduodenal tube (${\times}4$) within 10 days. The patient developed abdominal pain and pyrexia after each FMT session. Analyses revealed the transferred donor fecal microbiota had not been retained by the patient, who ultimately underwent colectomy. The severity of the UC and/or timing of FMT may have partly accounted for the poor outcome.

Effects of dietary fiber in gestating sow diets - A review

  • Hyunwoong Jo;Beob Gyun Kim
    • Animal Bioscience
    • /
    • v.36 no.11
    • /
    • pp.1619-1631
    • /
    • 2023
  • The objective of this review was to provide an overview of the effects of dietary fiber (DF) on reproductive performance in gestating sows. Dietary fibers have been suggested to modulate microbiota in the intestine and the immune system of gestating sows and to improve gut health. Thus, DF may help alleviate the adverse effects of the stressful production cycle of gestating sows. These benefits may subsequently result in improved reproductive performance of sows. Previous studies have reported changes in microbiota by providing gestating sows with DF, and the responses of microbiota varied depending on the source of DF. The responses by providing DF to gestating sows were inconsistent for antioxidative capacity, hormonal response, and inflammatory response among the studies. The effects of DF on reproductive performance were also inconsistent among the previous studies. Potential reasons contributing to these inconsistent results would include variability in reproductive performance data, insufficient replication, influence of other nutrients contained in the DF diets, characteristics of DF, and experimental periods. The present meta-analysis suggests that increasing the total DF concentration by 10 percentage units (e.g., 12% to 22% as-fed basis) in gestating sow diets compared to the control group improves the litter born alive by 0.49 pigs per litter. However, based on the present review, questions remain regarding the benefits of fibers in gestating sow diets. Further research is warranted to clarify the mode of action of fibers and the association with subsequent reproductive performance in gestating sows.

Cheonggukjang Fermented with Bacillus subtilis SCGB574 Ameliorates High Fat Diet-Deteriorated Large Intestinal Health in Rat Model

  • Jae Ho, Choi;Jiyon, Kim;Taekyun, Shin;Myeong Seon, Ryu;Hee-Jong, Yang;Do-Youn, Jeong;Hong-Seok, Son;Tatsuya, Unno
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.4
    • /
    • pp.522-532
    • /
    • 2022
  • Cheonggukjang is a traditional fermented food in Korea, which is known to exert beneficial effects on health. In this study, we evaluated the effects of cheonggukjang fermented by Bacillus subtilis SCGB 574 (B574) on high fat diet (HFD)-deteriorated large intestinal health. Rats were fed with HFD or HFD supplemented with 10.1% cheonggukjang (B574). Fecal microbiota was analyzed based on 16S rRNA gene sequences, and the fecal and serum metabolome were measured using GC-MS. Our results showed that SCGB574 intake significantly reduced body weight, restored tight junction components, and ameliorated inflammatory cell infiltration. SCGB574 also shifted gut microbiota by increasing the abundance of short chain fatty acid producers such as Alistipes and Flintibacter, although it decreased the abundance of Lactobacillus. Serum and fecal metabolome analyses showed significantly different metabolic profiles between the groups. The top five metabolites increased by SCGB574 were i) arginine biosynthesis, ii) alanine, aspartate, and glutamate metabolism; iii) starch and sucrose metabolism; iv) neomycin, kanamycin, and gentamicin biosynthesis; and v) galactose metabolism. These results showed that cheonggukjang fermented by SCGB574 ameliorates adverse effects of HFD through improving intestinal health.

Physiological Characteristics of Lactobacillus casei Strains and Their Alleviation Effects against Inflammatory Bowel Disease

  • Liu, Yang;Li, Yifeng;Yu, Xinjie;Yu, Leilei;Tian, Fengwei;Zhao, Jianxin;Zhang, Hao;Zhai, Qixiao;Chen, Wei
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.1
    • /
    • pp.92-103
    • /
    • 2021
  • Lactobacillus casei, one of the most widely used probiotics, has been reported to alleviate multiple diseases. However, the effects of this species on intestinal diseases are strain-specific. Here, we aimed to screen L. casei strains with inflammatory bowel disease (IBD)-alleviating effects based on in vitro physiological characteristics. Therefore, the physiological characteristics of 29 L. casei strains were determined, including gastrointestinal transit tolerance, oligosaccharide fermentation, HT-29 cell adhesion, generation time, exopolysaccharide production, acetic acid production, and conjugated linoleic acid synthesis. The effects of five candidate strains on mice with induced colitis were also evaluated. The results showed that among all tested L. casei strains, only Lactobacillus casei M2S01 effectively relieved colitis. This strain recovered body weight, restored disease activity index score, and promoted anti-inflammatory cytokine expression. Gut microbiota sequencing showed that L. casei M2S01 restored a healthy gut microbiome composition. The western blotting showed that the alleviating effects of L. casei M2S01 on IBD were related to the inhibition of the NF-κB pathway. A good gastrointestinal tolerance ability may be one of the prerequisites for the IBD-alleviating effects of L. casei. Our results verified the efficacy of L. casei in alleviating IBD and lay the foundation for the rapid screening of L. casei strain with IBD-alleviating effects.

Vascular Endothelial Growth Factor May Be Involved in the Behavioral Changes of Progeny Rats after Exposure to Ceftriaxone Sodium during Pregnancy

  • Yang, Xin;Tang, Ting;Li, Mengchun;Chen, Jie;Li, Tingyu;Dai, Ying;Cheng, Qian
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.6
    • /
    • pp.699-708
    • /
    • 2022
  • Antibiotic exposure during pregnancy have an adversely effects on offspring behavior and development. However, its mechanism is still poorly understood. To uncover this, we added ceftriaxone sodium to the drinking water of rats during pregnancy and conducted three-chamber sociability test, open-field test, and Morris water maze test in 3- and 6-week-old offspring. The antibiotic group offspring showed lower sociability and spatial learning and memory than control. To determine the role of the gut microbiota and their metabolites in the changes in offspring behavior, fecal samples of 6-week-old offspring rats were sequenced. The composition of dominant gut microbial taxa differed between the control and antibiotic groups. KEGG pathway analysis showed that S24-7 exerted its effects through the metabolic pathways including mineral absorption, protein digestion and absorption, Valine, leucine, and isoleucine biosynthesis. Correlation analysis showed that S24-7 abundance was negatively correlated with the level of VEGF, and metabolites associated with S24-7-including 3-aminobutanoic acid, dacarbazine, L-leucine, 3-ketosphinganine, 1-methylnicotinamide, and N-acetyl-L-glutamate-were also significantly correlated with VEGF levels. The findings suggest that antibiotic exposure during pregnancy, specifically ceftriaxone sodium, will adversely affects the behavior of offspring rats due to the imbalance of gut microbiota, especially S24-7, via VEGF and various metabolic pathways.