• Title/Summary/Keyword: Gut Health

Search Result 298, Processing Time 0.029 seconds

Immune Disorders and Its Correlation with Gut Microbiome

  • Hwang, Ji-Sun;Im, Chang-Rok;Im, Sin-Hyeog
    • IMMUNE NETWORK
    • /
    • v.12 no.4
    • /
    • pp.129-138
    • /
    • 2012
  • Allergic disorders such as atopic dermatitis and asthma are common hyper-immune disorders in industrialized countries. Along with genetic association, environmental factors and gut microbiota have been suggested as major triggering factors for the development of atopic dermatitis. Numerous studies support the association of hygiene hypothesis in allergic immune disorders that a lack of early childhood exposure to diverse microorganism increases susceptibility to allergic diseases. Among the symbiotic microorganisms (e.g. gut flora or probiotics), probiotics confer health benefits through multiple action mechanisms including modification of immune response in gut associated lymphoid tissue (GALT). Although many human clinical trials and mouse studies demonstrated the beneficial effects of probiotics in diverse immune disorders, this effect is strain specific and needs to apply specific probiotics for specific allergic diseases. Herein, we briefly review the diverse functions and regulation mechanisms of probiotics in diverse disorders.

Prebiotic Effects of Poly-Gamma-Glutamate on Bacterial Flora in Murine Gut

  • Jin, Hee-Eun;Choi, Jae-Chul;Lim, Yong Taik;Sung, Moon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.412-415
    • /
    • 2017
  • Prebiotics improve the growth or activities of specific microbial genera and species in the gut microbiota in order to confer health benefits to the host. In this study, we investigated the effect of poly-gamma-glutamate (${\gamma}-PGA$) as a prebiotic on the gut microbiota of mice and the organ distributions of ${\gamma}-PGA$ in mice. Pyrosequencing analysis for 16S rRNA genes of bacteria indicated that oral administration of ${\gamma}-PGA$ increased the abundance of Lactobacillales while reducing the abundance of Clostridiales in murine guts. It is suggested that oral administration of ${\gamma}-PGA$ can be helpful for modulating the gut microbiota as a prebiotic.

Effect of Chlorella vulgaris on gut microbiota through a simulated in vitro digestion process

  • Jin, Jong Beom;Cha, Jin Wook;Shin, Il-Shik;Jeon, Jin Young;An, Hye Suck;Cha, Kwang Hyun;Pan, Cheol-Ho
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.1
    • /
    • pp.49-55
    • /
    • 2021
  • The diet plays a fundamental role in the formation of the gut microbiota, determining the interrelationship between the gut microbiota and the host. The current study investigated the effect of Chlorella vulgaris on the gut microbiota by using simulated in vitro digestion and colonic fermentation. Bioaccessibility was measured after in vitro digestion, and SCFAs and microbial profiling were analyzed after colonic fermentation. The bioaccessibility of C. vulgaris was 0.24 g/g. The three major SCFAs (acetate, propionate, and butyrate) increased significantly when compared to the control group. In microbial profiling analysis, microorganisms such as Faecalibacterium, Dialister, Megasphaera, Dorea, Odoribacter, Roseburia, Bifidobacterium, Butyricmonas, and Veillonella were high in C. vulgaris group. Among them, Faecalibacterium, Dialister, Megasphaera, Roseburia, and Veillonella were thought to be closely associated with the increased level of SCFAs. Finally, it can be expected to help improve gut microbiota and health through ingestion of C. vulgaris. However, further studies are vital to confirm the changes in the gut microbiota in in vivo, when C. vulgaris is ingested.

Enhanced pig production: potential use of insect gut microbiota for pig production

  • Shin, Jiwon;Kim, Bo-Ra;Guevarra, Robin B.;Lee, Jun Hyung;Lee, Sun Hee;Kim, Young Hwa;Wattanaphansak, Suphot;Kang, Bit Na;Kim, Hyeun Bum
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.4
    • /
    • pp.655-663
    • /
    • 2018
  • The insect gut microbiome is known to have important roles in host growth, development, digestion, and resistance against pathogens. In addition, the genetic diversity of the insect gut microbiota has recently been recognized as potential genetic resources for industrial bioprocessing. However, there is limited information regarding the insect gut microbiota to better help us understand their potential benefits for enhanced pig production. With the development of next-generation sequencing methods, whole genome sequence analysis has become possible beyond traditional culture-independent methods. This improvement makes it possible to identify and characterize bacteria that are not cultured and located in various environments including the gastrointestinal tract. Insect intestinal microorganisms are known to have an important role in host growth, digestion, and immunity. These gut microbiota have recently been recognized as potential genetic resources for livestock farming which is using the functions of living organisms to integrate them into animal science. The purpose of this literature review is to emphasize the necessity of research on insect gut microbiota and their applicability to pig production or bioindustry. In conclusion, bacterial metabolism of feed in the gut is often significant for the nutrition intake of animals, and the insect gut microbiome has potential to be used as feed additives for enhanced pig performance. The exploration of the structure and function of the insect gut microbiota needs further investigation for their potential use in the swine industry particularly for the improvement of growth performance and overall health status of pigs.

Comparison of the Gut Microbiota of Centenarians in Longevity Villages of South Korea with Those of Other Age Groups

  • Kim, Bong-Soo;Choi, Chong Won;Shin, Hyoseung;Jin, Seon-Pil;Bae, Jung-Soo;Han, Mira;Seo, Eun Young;Chun, Jongsik;Chung, Jin Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.3
    • /
    • pp.429-440
    • /
    • 2019
  • Several studies have attempted to identify factors associated with longevity and maintenance of health in centenarians. In this study, we analyzed and compared the gut microbiota of centenarians in longevity villages with the elderly and adults in the same region and urbanized towns. Fecal samples were collected from centenarians, elderly, and young adults in longevity villages, and the gut microbiota sequences of elderly and young adults in urbanized towns of Korea were obtained from public databases. The relative abundance of Firmicutes was found to be considerably higher in subjects from longevity villages than those from urbanized towns, whereas Bacteroidetes was lower. Age-related rearrangement of gut microbiota was observed in centenarians, such as reduced proportions of Faecalibacterium and Prevotella, and increased proportion of Escherichia, along with higher abundances of Akkermansia, Clostridium, Collinsella, and uncultured Christensenellaceae. Gut microbiota of centenarians in rehabilitation hospitals were also different to those residing at home. These differences could be due to differences in diet patterns and living environments. In addition, phosphatidylinositol signaling system, glycosphingolipid biosynthesis, and various types of N-glycan biosynthesis were predicted to be higher in the gut microbiota of centenarians (corrected p < 0.05). These three metabolic pathways of gut microbiota can be associated with the immune status and healthy gut environment of centenarians. Although further studies are necessary to validate the function of microbiota between groups, this study provides valuable information on centenarians' gut microbiota.

Promotion of mental health by PungmulPanGut (one form of K-culture) -focusing on the ensemble Better Than Medicine (eBTM) performance. YouTube; https://youtu.be/SSenbSwI_5c

  • Ko, Kyung Ja;Cho, Hyun-Yong
    • CELLMED
    • /
    • v.12 no.1
    • /
    • pp.1.1-1.2
    • /
    • 2022
  • Mental health is attributed to person's well-being, abilities and productivity. The purpose of this study is to suggest the effects of K-culture to people in adversity. It is PungmulPanGut, represented by traditional Korean play culture. Pungmul is a performance with four percussion instruments, Janggu (Korean hourglass drum), Buk (barrel shaped drum), Jing (large gong), Kkwaenggwari (small gong), and play. In Korean, "pan" means that it's a place to do something. Gut means to make a wish. The ensemble Better Than Medicine (eBTM) is a team that has trained and worked with Gamuak (歌,舞,樂; singing, dancing, playing) for a long time, but is not perfect (we refer this as 2% lacking in music). The characteristic of our team is that we share joy while voluntarily participating and doing what we like. It is a combination of singing, dancing, playing musical instruments, and exciting people. There is wind-like energy and there is mutual cooperation, not competition. As we concentrate, we become immersed in each other's breathing and movement. So it makes us forget the hard situation, the hardships, the pain, and so on. In the meantime, our pleasures peak and share happy energy with each other. Even though we are two percent less skilled, our sense of happiness doubles. Music together is not competition but cooperative work and healing. Therefore, we suggest that PungmulPanGut can be better K-culture than medicine in promoting mental health.

Effect of Probiotic-Fortified Infant Formula on Infant Gut Health and Microbiota Modulation

  • Ju Young Eor;Chul Sang Lee;Sung Ho Moon;Ju Young Cheon;Duleepa Pathiraja;Byeonghyeok Park;Min Jae Shin;Jae-Young Kim;Sangjong Kim;Youngbae Noh;Yunhan Kim;In-Geol Choi;Sae Hun Kim
    • Food Science of Animal Resources
    • /
    • v.43 no.4
    • /
    • pp.659-673
    • /
    • 2023
  • Compared to infant formula, breast milk is the best source of nutrition for infants; it not only improves the neonatal intestinal function, but also regulates the immune system and gut microbiota composition. However, probiotic-fortified infant formula may further enhance the infant gut environment by overcoming the limitations of traditional infant formula. We investigated the probiotic formula administration for one month by comparing 118 Korean infants into the following three groups: infants in each group fed with breast milk (50), probiotic formula (35), or placebo formula-fed group (33). Probiotic formula improved stool consistency and defecation frequency compared to placebo formula-fed group. The probiotic formula helped maintaining the level of secretory immunoglobulin A (sIgA), which had remarkably decreased over time in placebo formula-fed infants (compared to weeks 0 and 4). Moreover, probiotic formula decreased the acidity of stool and considerably increased the butyrate concentration. Furthermore, the fecal microbiota of each group was evaluated at weeks 0 and 4. The microbial composition was distinct between each groups, and the abundance of health-promoting bacteria increased in the probiotic formula compared to the placebo formula-fed group. In summary, supplementation of probiotic infant formula can help optimize the infant gut environment, microbial composition, and metabolic activity of the microbiota, mimicking those of breast milk.

Intestinal Alkaline Phosphatase: Potential Roles in Promoting Gut Health in Weanling Piglets and Its Modulation by Feed Additives - A Review

  • Melo, A.D.B.;Silveira, H.;Luciano, F.B.;Andrade, C.;Costa, L.B.;Rostagno, M.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.1
    • /
    • pp.16-22
    • /
    • 2016
  • The intestinal environment plays a critical role in maintaining swine health. Many factors such as diet, microbiota, and host intestinal immune response influence the intestinal environment. Intestinal alkaline phosphatase (IAP) is an important apical brush border enzyme that is influenced by these factors. IAP dephosphorylates bacterial lipopolysaccharides (LPS), unmethylated cytosine-guanosine dinucleotides, and flagellin, reducing bacterial toxicity and consequently regulating toll-like receptors (TLRs) activation and inflammation. It also desphosphorylates extracellular nucleotides such as uridine diphosphate and adenosine triphosphate, consequently reducing inflammation, modulating, and preserving the homeostasis of the intestinal microbiota. The apical localization of IAP on the epithelial surface reveals its role on LPS (from luminal bacteria) detoxification. As the expression of IAP is reported to be downregulated in piglets at weaning, LPS from commensal and pathogenic gram-negative bacteria could increase inflammatory processes by TLR-4 activation, increasing diarrhea events during this phase. Although some studies had reported potential IAP roles to promote gut health, investigations about exogenous IAP effects or feed additives modulating IAP expression and activity yet are necessary. However, we discussed in this paper that the critical assessment reported can suggest that exogenous IAP or feed additives that could increase its expression could show beneficial effects to reduce diarrhea events during the post weaning phase. Therefore, the main goals of this review are to discuss IAP's role in intestinal inflammatory processes and present feed additives used as growth promoters that may modulate IAP expression and activity to promote gut health in piglets.

Comparison of Gut Microbiota between Lean and Obese Adult Thai Individuals

  • Jinatham, Vasana;Kullawong, Niwed;Kespechara, Kongkiat;Gentekaki, Eleni;Popluechai, Siam
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.3
    • /
    • pp.277-287
    • /
    • 2018
  • Current reports suggest that obesity is a serious global health issue. Emerging evidence has predicted strong links between obesity and the human gut microbiota. However, only a few such studies have been conducted in Asia, and the gut microbiota of lean and obese adult Asians remains largely unexplored. Here, we investigated the potential relationship between gut microbiota, body massindex (BMI), and metabolic parameters in adults from Thailand, where obesity is increasing rapidly. Fecal and blood samples were collected from 42 volunteers who were allocated into lean, overweight, and obese groups. The fecal microbiota was examined by quantitative PCR analysis. Bacteroidetes, Firmicutes, and Staphylococcus spp. and methanogens were most abundant in lean volunteers. Overweight volunteers majorly harbored Christensenella minuta and Akkermansia muciniphila, ${\gamma}-Proteobacteria$, and bacteria belonging to the genus Ruminococcus. Methanogens and bacteria belonging to the phylum Bacteroidetes were negatively correlated with adiposity markers (BMI and waist circumference), but positive correlated with high-density lipoprotein, suggesting that they can be used as leanness markers. While some of our results agree with those of previous reports, results regarding the contributions of specific taxa to obesity were inconsistent. This is the first study to report the adult gut microbiota in Southeast Asian populations using molecular techniques and biochemical markers and provides a foundation for future studies in this field.

Prebiotics in the Infant Microbiome: The Past, Present, and Future

  • Miqdady, Mohamad;Mistarihi, Jihad Al;Azaz, Amer;Rawat, David
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.23 no.1
    • /
    • pp.1-14
    • /
    • 2020
  • The latest definition of a prebiotic is "a substrate that is selectively utilized by host microorganisms conferring a health benefit"; it now includes non-food elements and is applicable to extra-intestinal tissues. Prebiotics are recognized as a promising tool in the promotion of general health and in the prevention and treatment of numerous juvenile diseases. Prebiotics are considered an immunoactive agent, with the potential for long-lasting effects extending past active administration of the prebiotic. Because of its extremely low risk of serious adverse effects, ease of administration, and strong potential for influencing the composition and function of the microbiota in the gut and beyond, the beneficial clinical applications of prebiotics are expanding. Prebiotics are the third largest component of human breast milk. Preparations including galactooligosaccharides (GOS), fructooligosaccharides (FOS), 2'-fucosyllactose, lacto-N-neo-tetraose are examples of commonly used and studied products for supplementation in baby formula. In particular, the GOS/FOS combination is the most studied. Maintaining a healthy microbiome is essential to promote homeostasis of the gut and other organs. With more than 1,000 different microbial species in the gut, it is likely more feasible to modify the gut microbiota through the use of certain prebiotic mixtures rather than supplementing with a particular probiotic strain. In this review, we discuss the latest clinical evidence regarding prebiotics and its role in gut immunity, allergy, infections, inflammation, and functional gastrointestinal disorders.