• Title/Summary/Keyword: Gumbel function

Search Result 36, Processing Time 0.023 seconds

Probability of performance failure of storm sewer according to accumulation of debris (토사 적체에 따른 우수관의 성능불능확률)

  • Kwon, Hyuk-Jae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.5
    • /
    • pp.509-517
    • /
    • 2010
  • Statistical distribution of annual maximum rainfall intensity of 18 cities in Korea was analyzed and applied to the reliability model which can calculate the probability of performance failure of storm sewer. After the analysis, it was found that distribution of annual maximum rainfall intensity of 18 cities in Korea is well matched with Gumbel distribution. Rational equation was used to estimate the load and Manning's equation was used to estimate the capacity in reliability function to calculate the probability of performance failure of storm sewer. Reliability analysis was performed by developed model applying to the real storm sewer. It was found that probability of performance failure is abruptly increased if the diameter is smaller than certain size. Therefore, cleaning the inside of storm sewer to maintain the original diameter can be one of the best ways to reduce the probability of performance failure. In the present study, probability of performance failure according to accumulation of debris in storm sewer was calculated. It was found that increasing the amount of debris seriously decrease the capacity of storm sewer and significantly increase the probability of performance failure.

Tail dependence of Bivariate Copulas for Drought Severity and Duration

  • Lee, Tae-Sam;Modarres, Reza;Ouarda, Taha B.M.J.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.571-575
    • /
    • 2010
  • Drought is a natural hazard with different properties that are usually dependent to each other. Therefore, a multivariate model is often used for drought frequency analysis. The Copula based bivariate drought severity and duration frequency analysis is applied in the current study in order to show the effect of tail behavior of drought severity and duration on the selection of a copula function for drought bivariate frequency analysis. Four copula functions, namely Clayton, Gumbel, Frank and Gaussian, were fitted to drought data of four stations in Iran and Canada in different climate regions. The drought data are calculated based on standardized precipitation index time series. The performance of different copula functions is evaluated by estimating drought bivariate return periods in two cases, [$D{\geq}d$ and $S{\geq}s$] and [$D{\geq}d$ or $S{\geq}s$]. The bivariate return period analysis indicates the behavior of the tail of the copula functions on the selection of the best bivariate model for drought analysis.

  • PDF

Agro-climate Characteristics and Stability in Crop Production of Daegwallyeong Area in Korea (기상자료 분석을 통한 대관령 지역의 작물 최저 한계온도일 추정)

  • Ryu, Jong-Soo;Lee, Jeong-Tae;Lee, Gye-Jun;Oh, Dong-Shig
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1153-1156
    • /
    • 2012
  • Daegwallyeong area to be formed along the mountainous terrain more above 800 m of sea level is known as the cold zone to occur frequently wind, rain and fog. This study to evaluate the stability of crop production and agricultural production potential in the Daegwallyeong was calculated for the low temperature frequency of occurrence and potential evapotranspiration changes with announce the release of Korea Meteorological Administration (KMA) from 1972 to 2009 up to 38 years. Evapotranspiration calculated FAO and other international standard method authorized under the PENMAN-MONTEITH Method was used, and the low temperature onset and frequency of the Gumbel probability density function was used. As a result, the variation of day evaporation for 38 years were showed to respectively width of variation from maximum $9mm\;day^{-1}$ to minimum $0.5mm\;day^{-1}$. The frequency of reappearance to first emergence day that lasts more than 5 days with temperature $5^{\circ}C$ over is 3 April a 50-year frequency, 10 April a 25-year frequency, 20 April a 10-year frequency, 28 April a 5-year frequency, 8 May a 2-year frequency. Psychrotrophic crop to growth temperature more than $5^{\circ}C$ can be secured to stable production with planting after May 8, prior to planting for normal growth can be seen that the risk of growth.

Safety Analysis of Storm Sewer Using Probability of Failure and Multiple Failure Mode (파괴확률과 다중파괴유형을 이용한 우수관의 안전성 분석)

  • Kwon, Hyuk-Jae;Lee, Cheol-Eung
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.11
    • /
    • pp.967-976
    • /
    • 2010
  • AFDA (Approximate Full Distribution Approach) model of FORM (First-Order Reliability Model) which can quantitatively calculate the probability that storm sewer reach to performance limit state was developed in this study. It was defined as a failure if amount of inflow exceed the capacity of storm sewer. Manning's equation and rational equation were used to determine the capacity and inflow of reliability function. Furthermore, statistical characteristics and distribution for the random variables were analyzed as a reliability analysis. It was found that the statistical distribution for annual maximum rainfall intensity of 10 cities in Korea is matched well with Gumbel distribution. Reliability model developed in this study was applied to Y shaped storm sewer system to calculate the probability that storm sewer may exceed the performance limit state. Probability of failure according to diameter was calculated using Manning's equation. Especially, probability of failure of storm sewer in Mungyeong and Daejeon was calculated using rainfall intensity of 50-year return period. It was found that probability of failure can be significantly increased if diameter is decreased below the original diameter. Therefore, cleaning the debris in sewer pipes to maintain the original pipe diameter should be one of the best ways to reduce the probability of failure of storm sewer. In sewer system, two sewer pipes can flow into one sewer pipe. For this case, probability of system failure was calculated using multiple failure mode. Reliability model developed in this study can be applied to design, maintenance, management, and control of storm sewer system.

Future drought risk assessment under CMIP6 GCMs scenarios

  • Thi, Huong-Nguyen;Kim, Jin-Guk;Fabian, Pamela Sofia;Kang, Dong-Won;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.305-305
    • /
    • 2022
  • A better approach for assessing meteorological drought occurrences is increasingly important in mitigating and adapting to the impacts of climate change, as well as strategies for developing early warning systems. The present study defines meteorological droughts as a period with an abnormal precipitation deficit based on monthly precipitation data of 18 gauging stations for the Han River watershed in the past (1974-2015). This study utilizes a Bayesian parameter estimation approach to analyze the effects of climate change on future drought (2025-2065) in the Han River Basin using the Coupled Model Intercomparison Project Phase 6 (CMIP6) with four bias-corrected general circulation models (GCMs) under the Shared Socioeconomic Pathway (SSP)2-4.5 scenario. Given that drought is defined by several dependent variables, the evaluation of this phenomenon should be based on multivariate analysis. Two main characteristics of drought (severity and duration) were extracted from precipitation anomalies in the past and near-future periods using the copula function. Three parameters of the Archimedean family copulas, Frank, Clayton, and Gumbel copula, were selected to fit with drought severity and duration. The results reveal that the lower parts and middle of the Han River basin have faced severe drought conditions in the near future. Also, the bivariate analysis using copula showed that, according to both indicators, the study area would experience droughts with greater severity and duration in the future as compared with the historical period.

  • PDF

Estimating optimal flood of the hydroelectric dams on the Bukhangang River (북한강 수계 수력발전댐의 최적설계홍수량 추정)

  • Kim, Sang Ug;Choi, Kwang Bae;Seo, Dong Il;Cheon, Young Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.286-286
    • /
    • 2022
  • 홍수피해를 최소화하기 위한 수공구조물의 적정 규모 결정을 위해 사용되는 홍수빈도분석에는 통계적 분석절차에 따른 불확실성이 포함된다. 따라서 불확실성이 포함된 범주 내에서 가장 적절한 설계홍수량(design flood)를 결정하는 과정은 수공구조물의 최종단계에서 중요하게 다루어져야 하는 부분이나 이를 제시한 연구는 많지 않다. 비용-편익 분석기법을 홍수빈도분석 절차에 도입하여 구성되는 총 기대비용함수(total expected cost function)는 설계홍수량 중 최적 설계홍수량(optimal design flood)를 결정하기 위한 새로운 접근방식이다. 이 절차는 UNCODE(UNcertainty COmpliant DEsign)로 명명되어 사용된 바 있으나, 국내에서는 아직 적용 결과가 소개되지 않고 있다. 따라서 본 연구에서는 UNCODE의 수학적 구성 절차를 소개함과 함께 북한강수계에 위치한 수력발전댐(화천댐, 춘천댐, 의암댐, 청평댐)의 년최대유입량을 사용하여 최적 설계홍수량을 산정하고 이 결과를 기존 홍수빈도분석 결과와 비교하였다. 불확실성이 고려된 총 기대비용함수로부터 확률분포함수들(Gumbel 및 GEV)의 모수를 추출하는 과정에서 Metropolis-Hastings 알고리즘을 사용하여 불확실성의 범위를 추정하였으며, 비용-편익 분석기법에 사용되는 비용 및 피해함수는 수학적 구성의 편의성을 위하여 1차 선형함수로 가정되었다. 4개의 발전용댐, 2개의 확률분포 및 2개의 재현기간에 대하여 최적 설계홍수량의 중앙값이 기존 홍수빈도분석 절차에 의해 산정된 설계홍수량보다 일정 정도 큰 값으로 산정됨을 알 수 있었다. 향후에는 본 연구에서 적용된 절차를 간단한 수식형태로 함수화하여 발전용댐 운영의 실무업무나 하천기본계획의 수립 등에 있어 비용-편익분석 기법의 적용성을 높이기 위한 연구가 진행될 필요가 있을 것으로 판단된다.

  • PDF