최근 다변량 확률모형을 이용한 빈도해석이 수문자료 등에 적용되면서 다양하게 연구되고 있으며 다변량 확률모형 중 copula 모형은 주변분포형에 대한 제약이 없어 여러 분야에 걸쳐 활발히 연구되고 있다. 강우자료는 기존 일변량 빈도해석을 수행하기 위하여 사용하던 block maxima 방법 대신 최소무강우시간(inter event time)을 통하여 강우사상을 추출하여 표본으로 사용한다. 또한 기후변화로 인한 강우량의 변화등에 대응하기 위하여 비정상성 Generalized Extreme Value(GEV)와 Gumbel 등의 확률분포형에 대한 연구도 많은 부분 이루어져 있다. 본 연구에서는, Archimedean copula 모형을 이용하여 이변량 확률모형을 구축하면서 여기에 사용되는 주변분포형에 정상성/비정상성 분포형을 적용하였다. 모형의 매개변수는 inference function for margin 방법을 이용하였으며 주변분포형으로는 정상성/비정상성 GEV, Gumbel 모형을 적용하였다. 결과로 정상성/비정상성 경향을 나타내는 지점을 구분하고 각 지점에 대한 정상성/비정상성 주변분포형을 적용한 이변량 확률분포형을 구하였다.
Communications for Statistical Applications and Methods
/
제30권5호
/
pp.467-483
/
2023
In this research, a conversion function and a distortion associated with the conversion function are defined and used to derive a unit power Gompertz distortion. A new family of copulas is built using the global distorted function. Four base copulas, namely Clayton, Gumbel, Frank, and Gaussian, are distorted into the family. Some properties including tail dependence coefficients and tail order are examined. Kendall's tau formula is derived for new copulas when the base copula is Clayton, Gumbel, or Frank. The maximum pseudo-likelihood estimation method is employed, and a simulation study was performed. The log-likelihood and AIC are reported to compare the performance of the fitted copulas. According to the applied data, the results indicate that new distorted copulas with additional parameters improve the fit.
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권12호
/
pp.4567-4583
/
2021
This study proposes an analytical approximation algorithm based on extreme value theory (EVT) for the inverse of the power of the incomplete Gamma function. First, the Gumbel function is used to approximate the power of the incomplete Gamma function, and the corresponding inverse problem is transformed into the inversion of an exponential function. Then, using the tail equivalence theorem, the normalized coefficient of the general Weibull distribution function is employed to replace the normalized coefficient of the random variable following a Gamma distribution, and the approximate closed form solution is obtained. The effects of equation parameters on the algorithm performance are evaluated through simulation analysis under various conditions, and the performance of this algorithm is compared to those of the Newton iterative algorithm and other existing approximate analytical algorithms. The proposed algorithm exhibits good approximation performance under appropriate parameter settings. Finally, the performance of this method is evaluated by calculating the thresholds of space-time block coding and space-frequency block coding pattern recognition in multiple-input and multiple-output orthogonal frequency division multiplexing. The analytical approximation method can be applied to other related situations involving the maximum statistics of independent and identically distributed random variables following Gamma distributions.
The asymptotic extreme value distributions of maxima are a natural choice when designing against future extreme events like flood peaks or wave heights, given a stationary time series. The generalized extreme value distribution (GEV) is often utilised in this context because it is seen as a convenient single expression for extreme event analysis. However, the GEV has a drawback because the location of the distribution bound relative to the data is a discontinuous function of the GEV shape parameter. That is, for annual maxima approximated by the Gumbel distribution, the data is also consistent with a GEV distribution with an upper bound (no lower bound) or a GEV distribution with a lower bound (no upper bound). A more consistent single extreme value expression for design purposes is proposed as the Weibull distribution of smallest extremes, as applied to transformed annual maxima. The Weibull distribution limit holds here for sufficiently large sample sizes, irrespective of the extreme value domain of attraction applicable to the untransformed maxima. The Gumbel, Type 2, and Type 3 extreme value distributions thus become redundant, together with the GEV, because in reality there is only a single asymptotic extreme value distribution required for design purposes - the Weibull distribution of minima as applied to transformed maxima. An illustrative synthetic example is given showing transformed maxima from the normal distribution approaching the Weibull limit much faster than the untransformed sample maxima approach the normal distribution Gumbel limit. Some New Zealand examples are given with the Weibull distribution being applied to reciprocal transformations of annual flood maxima, where the untransformed maxima follow apparently different extreme value distributions.
최근 우리나라에서 집중 호우의 발생이 잦아지고 강우 강도가 증가하면서 강우로 인한 극심한 홍수 피해가 빈번히 발생하고 있다. 홍수피해의 경감을 위해서 수공구조물의 계획 및 설계에서 강우의 증가경향을 반영한 목표년도 확률강우량 산정이 필요하다. 본 연구에서는 30년 이상 자료보유기간을 가진 기상청 관할 56개 강우관측소의 강우자료를 분석하여 증가 경향성이 존재하는 7개 지점의 설계목표년도의 확률강우량을 산정하는 방법을 제안하였다. Gumbel 분포를 이용하여 연 최대 강우량 평균과 위치 매개변수, 축척 매개변수 간 관계를 분석하였으며, 이를 바탕으로 설계목표년도에 적용가능한 확률밀도함수를 추정하고, 확률강우량을 산정하였다. 본 연구에서 제안된 방법으로 산정된 목표년도 확률강우량은 자료의 정상성을 가정한 확률강우량에 비해 6-20% 정도의 증가를 보여주고 있다.
우리나라는 수공구조물 설계할 때 강우빈도해석과 강우-유출 모형으로 홍수량을 산정하여 사용하고 있다. 그러나 강우자료의 확률분포 및 자료기간 등에 따른 매개변수 추정에 많은 불확실성이 존재하나 이를 고려한 해석은 이루어지지 않고 있다. 이러한 점에서 Gumbel 분포형과 확률가중 모멘트법을 기준으로 확률강우량의 신뢰구간을 평가함과 동시에 매개변수의 불확실성을 평가하는데 있어서 우수한 성능을 발휘하는 Bayesian방법을 도입하여 서울지역의 확률강우량의 불확실성을 정량적으로 평가하였다. 두 가지 방법의 비교결과 확률가중모멘트법의 신뢰구간이 Bayesian 방법의 불확실성 구간보다 전반적으로 크게 나타났다. 신뢰구간의 경우 정규분포를 따르기 때문에 좌우대칭의 형태를 갖는 반면에 Bayesian 방법의 불확실성은 Gumbel 분포로부터 유도되어, 보다 현실적인 불확실성 평가가 가능하였다. 자료의 구간 및 기간에 따른 확률강우량의 불확실성을 평가한 결과 자료에 증가에 따른 불확실성 감소를 확인할 수 있었으며, Bayesian 방법이 자료 증가에 따른 불확실성 범위 감소가 보다 뚜렷하게 나타나는 것을 확인할 수 있었다.
본 연구에서는 최근 발생한 2014~2015 가뭄 사상을 보다 정확하게 분석하기 위해 삼변량 Copula 함수를 도입하여 연구를 진행하였다. 기존 연구에서는 일반적으로 가뭄 분석시 이변량(가뭄 지속시간, 심도)를 활용한 연구가 다수 진행되었다. 그러나 최근 강우자료의 패턴을 살펴보면 두 변량 이외의 가뭄 강도가 중요한 인자로 평가되어 이를 함께 고려한 삼변량 Copula 분석을 수행하였으며, 기상청 관측소 중 서울 관측소를 대상으로 연구를 진행하였다. 기본적으로, 이변량 빈도해석 결과에 비해 삼변량 해석 결과는 동일한 가뭄 사상에 대해서 다소 증가된 재현기간을 나타내는 것으로 파악됐다. 이와 더불어, Gumbel Copula 함수의 경우 Student t Copula 함수보다 가뭄 위험도 평가 시 다소 과대 추정하는 것으로 확인되었다. 즉, 삼변량 빈도해석 시 고려되는 Copula 함수의 선택이 가뭄의 재현기간을 추정하는데 있어 매우 민감한 사항으로 평가되었다.
International Journal of Reliability and Applications
/
제11권1호
/
pp.41-53
/
2010
In the present paper we develop a mathematical model that facilitates the calculation of reliability of a complex repairable system having three units namely super priority, priority and ordinary. The system is analyzed with the application of Gumbel Hougaard copula when different types of repair possible at a particular state due to deliberate failure. Various reliability measures such as reliability, MTTF and profit function have been evaluated by using supplementary variable and Laplace transform techniques.
홍수사상은 크게 첨두홍수량, 홍수용적, 지속기간 등과 같은 서로 상관된 세 가지의 요소에 의해 특성화되어진다. 그러나 그동안 수공학적 계획이나 설계 등을 위한 홍수빈도 해석에서는 주로 첨두홍수량 한가지 요소에 초점을 맞추어 홍수빈도 해석을 수행해 왔다. 이러한 단변량 홍수빈도 해석은 서로 상관된 홍수사상 요소 사이의 복잡한 확률적 거동을 분석하는 데 있어 한계를 가지고 있다. 본 연구에서는 Gumbel 혼합모형, 이변량 감마분포, 이변량 핵밀도 함수 등 세 가지의 이변량 빈도해석 방법을 적용하여 이변량 빈도해석을 수행하고 그 결과를 단변량 빈도해석 방법의 결과와 비교 분석하였다. 소양강댐의 35개년 일 유입량 자료와 대청댐의 28개년 일 유입량 자료에 대해 각각의 홍수사상을 분리하고, 홍수사상 자료의 통계량과 매개변수, 최적 광역폭 등을 산정한 후 자료의 적합도 검정과 결합분포의 적합도 검정 등의 과정을 거쳐 첨두홍수량과 홍수용적의 조합을 고려하여 결합분포와 결합 재현기간 등을 추정하였다. 이처럼 세 가지 방법의 이변량 빈도해석을 통해 추정된 결과를 단변량 홍수빈도 해석의 결과와 비교 분석함으로써 각 방법의 상관성을 파악할 수 있었고, 이변량 홍수빈도 해석의 특성에 의해 도출된 결과를 토대로 이변량 홍수빈도 해석의 적용성에 대하여 검토하였다.
본 논문에서는 비동질 포아송 프로세스(NHPP)에 기초한 소프트웨어 에러 현상에 대한 확률 모형을 고려하였다. 고장 패턴은 NHPP에 대한 강도함수와 평균값 함수로서 나타낼 수 있다. 따라서 본 논문에서는 기존의 모형인 Goel 이 제시한 일반화모형[2]과 Yamada, Ohba-Osaki 모형[11]을 재조명하고 이러한 모형과 연관되고 신뢰도 분포로 많이 사용되는 와이블 분포의 특수형태인 레일리(Rayleigh)분포와 겜벨(Gumbel)분포[5]를 이용한 모형을 제시하고, 또 효율적 모형을 위한 모형선택으로서 편차자승합(SSE)을 이용하여 비교하였다. 모수의 추정을 위해서 최우추정법(MLE)과 일반적인 수치해석적 방법인 이분법을 이용하였다. 수치적인 예에서는 실측자료인 NTDS 자료[4]를 이용하여 모수 및 신뢰도를 추정하였고 편차자승합을 이용한 모형비교의 결과를 나열하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.