• Title/Summary/Keyword: Guided missile

Search Result 170, Processing Time 0.028 seconds

Crabbing Motion Testing of Waterjet-Powered Ships Using Stern Thrusters

  • Joopil Lee;Seung-Ho Ham
    • Journal of Ocean Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.10-17
    • /
    • 2024
  • This study assessed the potential for crabbing motion in waterjet ships by exclusively employing stern thrusters. The theoretical considerations were validated through practical sea trials on the naval vessel PKG (Patrol Killer Guided missile) equipped with three stern thrusters. The control forces were calculated using the force equilibrium equation. The results showed that the hull exhibited rotations and lateral movements under wind influence. The port tail exhibited a leftward turning tendency due to the wind. This phenomenon arises from the dominance of the rotational force generated by the stern thruster over the lateral force exerted by the hull, making it challenging to maintain force equilibrium. In the sea trial, the hull rotated by 10° and moved 10.8 m laterally, with a longitudinal movement of 0.26 m. Remarkably, the lateral movement surpassed the longitudinal displacement, indicating the success of the trial. The substantial lateral travel distance provided tangible evidence that the crabbing motion of the ship is achievable using only stern thrusters. This study contributes valuable insights into enhancing the maneuverability of waterjet ships, offering practical applications for naval operations and maritime activities.

A Study on the Prediction of Failure Rate of Airforce OO Guided Missile Based on Field Failure Data (야전운용제원에 기반한 공군 OO유도탄 고장률 예측에 관한 연구)

  • Park, Cheonkyu;Ma, Jungmok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.428-434
    • /
    • 2020
  • The one-shot weapon system is destroyed after only one mission. So, the system requires high reliability. Guided missiles are one-shot weapon systems that have to be analyzed by storage reliability since they spend most of their life in storage. The analysis results depend on the model and the ratio of correct censored data. This study was conducted to propose a method to more accurately predict the future failure rate of Air force guided missiles. In the proposed method, the failure rate is predicted by both MTTF (Mean Time To Failure) and MTBF (Mean Time Between Failure) models and the model with a smaller error from the real failure rate is selected. Next, with the selected model, the ratio of correct censored data is selected to minimize the error between the predicted failure rate and the real failure rate. Based on real field data, the comparative result is determined and the result shows that the proposed sampling rate can predict the future failure rate more accurately.

A Research on the Manufacturing Process Improvement of High-Precision Parts for Precision Guided Missile (유도무기용 소형 정밀부품 제조공법 개선에 관한 연구)

  • Kim, Kyu-Young;Seo, Jung-Hwa;Kim, Kyoung-Rok;Kim, Bo-Ram
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.1-9
    • /
    • 2020
  • The manufacturing processes of high-precision parts for PGM (Precision Guided Missiles) have not been improved for decades; they still depend on machining or high-precision casting. These processes have an advantage when making small amounts of high-reliability parts in the usual case of a PGM system. In the case of a PGM system, however, which has been made for striking an extensive area, requires hundreds of bomblet units that require mass productivity. In addition, in the case of a part that is very difficult to machine, mass productivity and quality cannot be satisfied at the same time. In particular, cost reduction is an essential precondition to strengthening the export competitiveness of Korean defense articles. This study examined whether the MIM process is appropriate for manufacturing high-precision parts that require mass productivity. The optimized MIM process condition was determined after carrying out fundamental research. Comparisons of the quality of prototype parts with original parts and a functional test of a fuse that had been made with MIM parts highlighted the application possibility of the MIM process.

A Performance of Positioning Accuracy Improvement Scheme using Wavelet Denoising Filter (Wavelet Denoising Filter를 이용한 측위 정밀도 향상 기법 성능)

  • Shin, Dong Soo;Park, Ji Ho;Park, Young Sik;Hwang, Yu Min;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.3
    • /
    • pp.9-14
    • /
    • 2014
  • Recently, precision guided munition systems and missile defense systems based on GPS have been taking a key role in modern warfare. In warfare however, unexpected interferences cause by large/small scale fading, radio frequency interferences, etc. These interferences result in a severe GPS positioning error, which could occur late supports and friendly fires. To solve the problems, this paper proposes an interference mitigation positioning method by adopting a wavelet denoising filter algorithm. The algorithm is applied to a GPS/QZSS/Wi-Fi combined positioning system which was performed by this laboratory. Experimental results of this paper are based on a real field test data of a GPS/QZSS/Wi-Fi combined positioning system and a simulation data of a wavelet denoising filter algorithm. At the end, the simulation result demonstrates its superiority by showing a 21.6% improved result in comparison to a conventional GPS system.

A Study of Reliability Analysis and Application on Naval Combat System Using Field Critical Failure Data (야전 치명고장자료를 이용한 함정전투체계 신뢰성 분석 및 활용 방안)

  • Kim, Young-Jin;Oh, Hyun-Seung;Choi, Bong-Wan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.4
    • /
    • pp.49-59
    • /
    • 2016
  • Naval combat system developed in-country is progressing at an alarming rate since 2000. ROK navy will be achieved all vessels that have combat system in the near future. The importance of System Engineering and Integrated Logistics Support based on reliability analysis is increasing. However, reliability analysis that everyone trusted and recognized is not enough and applied practically for development of Defense Acquisition Program. In particular, Existing Reliability Analysis is focusing on reliability index (Mean Time Between Failure (MTBF) etc.) for policy decision of defense improvement project. Most of the weapon system acquisition process applying in the exponential distribution simply persist unreality due to memoryless property. Critical failures are more important than simple faults to ship's operator. There are no confirmed cases of reliability analysis involved with critical failure that naval ship scheduler and operator concerned sensitively. Therefore, this study is focusing on Mean Time To Critical Failure (MTTCF), reliability on specific time and Operational Readiness Float (ORF) requirements related to critical failure of Patrol Killer Guided missile (PKG) combat system that is beginning of naval combat system developed in-country. Methods of analysis is applied parametric and non-parametric statistical techniques. It is compared to the estimates and proposed applications. The result of study shows that parametric and non-parametric estimators should be applied differently depending on purpose of utilization based on test of normality. For the first time, this study is offering Reliability of ROK Naval combat system to stakeholders involved with defense improvement project. Decision makers of defense improvement project have to active support and effort in this area for improvement of System Engineering.

Piezo-Composite Actuator for Control Surface of a Small Unmanned Air Vehicle (소형 무인 비행체 조종면 작동용 압전 복합재료 작동기 연구)

  • Yoon, Bum-Soo;Park, Ki-Hoon;Yoon, Kwang-Joon
    • Composites Research
    • /
    • v.27 no.2
    • /
    • pp.47-51
    • /
    • 2014
  • The purpose of the present study is to develop lightweight and simple smart actuators in order to replace conventional hydraulic/pneumatic actuators, and to apply the developed actuators to the actuation systems of a small unmanned air vehicle. This research describes the procedures of design, manufacturing of the piezo-composite actuator, and the performance evaluation. From the test results of the developed devices, we found the possibility of piezo-composite actuator could be used as a control surface of a small UAV system. We have designed and manufactured two kinds of piezo-composite actuators, unimorph actuator and bimorph actuator. The manufactured actuators were evaluated through the performance testes. It was found that the bimorph type actuator showed more linear angle change for the same excitation voltage variation than unimorph type. It is expected that piezo-composite actuator has a possibility to be used not only as a control surface of small unmanned flying vehicle but also as a control surface actuator of a guided missile fin through the miniaturization of power supply and control system.

A Study on Development of the High-Power Low-Loss Waveguide Circulator for Ka-band Millimeter-Wave Seeker (밀리미터파대역(Ka-대역)탐색기용 고 전력 저 손실 도파관 순환기 개발에 관한 연구)

  • Jung, Chae-Hyun;Han, Sung-Min;Baek, Jong-Gyun;Lee, Kook-Joo;Park, Chang-Hyun;Kwon, Jun-Beom
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.6
    • /
    • pp.83-88
    • /
    • 2017
  • In this paper, a 3-port waveguide circulator of Ka-band millimeter-wave for isolation between transmit channel and receive channel at high power transmit mode is designed and fabricated for the seeker of the guided missile and circulator performance is verified through the S-parameter, high power and operation temperature test. At the configuration design, interface design between a seeker antenna and the circulator is considered and half-height of standard waveguide is applied for minimum and light weight body. The shape of permanent magnet and ferrite is optimized by simulation and tuning dielectrics at each port are placed for the best performance. In Fc(center frequency)${\pm}1000MHz$, designed waveguide circulator has below -20 dB return loss, below 0.5 dB insertion loss and below -23 dB isolation. It is found that circulator characteristics is similar to design results.

Development of Simulation Tool for Ship Self Defense Scenario Using Naval Multi Function Radar (함정용 다기능 레이다를 이용한 자함 방어 시나리오 시뮬레이션 도구 개발)

  • Park, Myung-Hoon;Kim, Chang-Hwan;Kim, Hyun-Seung;Go, Jin-Yong;Jeon, Woo-Joong;Kwon, Se-Woong;Lee, Ki-Won;Kang, Yeon-Duk;Yoo, Seung-Ki
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.2
    • /
    • pp.87-96
    • /
    • 2020
  • The multi function radar is searching target and tracking through resource management at the same time. Increasing resource allotment of track, if more targets and faster the renewal rate of track, lead to decreasing quota of searching resource in limited resource. When the resource of search are decreased, it becomes degrade searching performance such as revisit time, number of detecting chance and tracking etc. Degraded performance of search reduces guided missile defense probability in complex strategy such as ship self defense. In this paper, we developed a modeling and simulation (M&S) tool that uses own-ship model, radar model, target model and defense model for analysis of self defense in complex strategy. We analyzed influence of ship self defense in complex strategy according to various target environments and track performance.

Study of Base DRAG Prediction With Chamber Pressure at Super-Sonic Flow (초음속 유동에서 챔버 압력에 따른 기저항력 변화 예측)

  • Kim, Duk-Min;Nam, Junyeop;Lee, Hyoung Jin;Noh, Kyung-Ho;Lee, Daeyeon;Kang, Dong-Gi
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.11
    • /
    • pp.849-859
    • /
    • 2020
  • The semi-empirical equation and commercial computational tool were used to predict the base drag of a guided missile with free-stream Mach numbers and chamber pressures, and the results were generally agree each other. Differences in flow characteristics and base drags were observed with over/under expansion conditions by the nozzle. Under the over-expansion condition, the base pressure decreased as the expansion fan was generated at upper region of the base, and base pressure decreased further with increasing free-stream Mach number as the expansion becomes strong. Under the under-expansion conditions, a shock wave was generated around the base by the influence of the nozzle flow, which increased the base pressure, and the effect increased as the chamber pressure increased. Under the same chamber pressure condition, as the free-stream Mach number increases, the characteristic that the base pressure decreases as the shock wave generated at the base moves downstream was observed.

Look-Angle-Control Homing Loop Design with a Strapdown Seeker and Single Gyroscope (스트랩다운탐색기와 1축 각속도계를 이용한 관측각제어 호밍루프설계)

  • Hong, Ju-Hyeon;Park, Kuk-Kwon;Park, Sang-Sup;Ryoo, Chang-Kyung;Cho, Han-Jin;Cho, Young-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.4
    • /
    • pp.324-332
    • /
    • 2016
  • In this paper, the terminal homing loop with a IIR-type strapdown seeker and a roll rate gyroscope is proposed. Basically, the proposed homing loop is based on the look-angle-control guidance. Since the range of the seeker is strictly limited, the missile is delivered to a point to lock the target on the seeker via non-guided flight during the midcourse guidance. The non-standard firing table is developed to compensate the wind and the target movement. To secure the delay margin is very important to prevent the instability of the homing loop when the time delay of the seeker is included. To validate the proposed homing loop, the 6-DOF nonlinear simulation is performed, and the Monte-Carlo simulation is also done for checking the robustness for the various kinds of uncertainty.