• Title/Summary/Keyword: Guided bone regeneration (GBR)

Search Result 80, Processing Time 0.025 seconds

Guided bone regeneration using two types of non-resorbable barrier membranes (두 가지 유형의 비흡수성 차단막을 이용한 골유도재생술의 비교연구)

  • Lee, Ji-Young;Kim, Young-Kyun;Yun, Pil-Young;Oh, Ji-Su;Kim, Su-Gwan
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.36 no.4
    • /
    • pp.275-279
    • /
    • 2010
  • Introduction: Guided bone regeneration (GBR) is a common procedure for the treatment of bone defects and bone augmentation. The nonresorbable barriers are well-documented barriers for GBR because of their stability and malleability. However, few GBR studies have focused on the different types of non-resorbable barriers. Therefore, this study examined the clinical results of different non-resorbable barriers for GBR; expanded polytetrafluoroethylene (e-PTFE) (TR-Gore Tex, Flagstaff, AZ, USA), and high-density polytetrafluoroethylene (d-PTFE) (Cytoplast membrane, Oraltronics, Bremen, Germany). Materials and Methods: The analysis was performed on patients treated with GBR and implant placement from January 2007 to October 2007 in the department of the Seoul National University Bundang Hospital. The patients were divided into two groups based on the type of non-resorbable barrier used, and the amount of bone regeneration, marginal bone resorption after prosthetics, implant survival rate and surgical complication in both groups were evaluated. Results: The implants in both groups showed high survival rates, and the implant-supported prostheses functioned stably during the follow-up period. During the second surgery of the implant, all horizontal defects were filled with new bone, and there was no significant difference in the amount of vertical bone defect. Conclusion: In bone defect areas, GBR with non-resorbable barriers can produce favorable results with adequate postoperative management. There was no significant difference in bone regeneration between e-PTFE and d-PTFE.

Guided bone regeneration using K-incision technique

  • Cho, Young-Dan;Ku, Young
    • Journal of Periodontal and Implant Science
    • /
    • v.48 no.3
    • /
    • pp.193-200
    • /
    • 2018
  • Purpose: The present study describes 3 patients with chronic periodontitis and consequent vertical resorption of the alveolar ridge who were treated using implant-based restoration with guided bone regeneration (GBR). Methods: After extraction of a periodontally compromised tooth, vertical bone augmentation using a K-incision was performed at the healed, low-level alveolar ridge. Results: The partial-split K-incision enabled soft tissue elongation without any change in buccal vestibular depth, and provided sufficient keratinized gingival tissue during GBR. Conclusions: Within the limits of this study, the present case series demonstrated that the novel K-incision technique was effective for GBR and allowed normal implant-based restoration and maintenance of a healthy periodontal condition. However, further long-term follow-up and a large-scale randomized clinical investigation should be performed to evaluate the feasibility of this technique.

The factors related with the failure in GBR and GTR technique (차폐막을 이용한 치주조직 및 골조직 유도재생술의 실패요인에 대한 고찰)

  • Yeom, Hey-Ri;Ku, Young;Chung, Chong-Pyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.27 no.1
    • /
    • pp.117-128
    • /
    • 1997
  • Using barrier membrane, guided bone regeneration(GBR) and guided tissue regeneration(GTR) of periodontal tissue are now widely studied and good results were reported. In bone regeneration, not all cases gained good results and in some cases using GTR, bone were less regenerated than that of control. The purpose of this study is to search for the method to improve the success rate of GBR and GTR by examination of the cause of the failure. For these study, rats and beagle dogs were used. In rat study, 5mm diameter round hole was made on parietal bone of the rat and 10mm diameter of bioresorbable membrane was placed on the bone defects and sutured. In 1 ,2, 4 weeks later, the rats were sacrificed and Masson-Trichrome staining was done and inspected under light microscope for guided bone regeneration. In dog study, $3{\times}4mm^2$ Grade III furcation defect was made at the 3rd and 1th premolar on mandible of 6 beagle dogs. The defects were covered by bioresorbable membrane extending 2-3mm from the defect margin. The membrane was sutured and buccal flap was covered the defect perfectly. In 2, 4. 8 weeks later. the animals were sacrificed and undecalcified specimens were made and stained by multiple staining method. In rats. there was much amount of new bone formation at 2 weeks. and in 4 weeks specimen, bony defect was perfectly dosed and plenty amount of new bone marrow was developed. In some cases, there were failures of guided bone regeneration. In beagle dogs, guided tissue regeneration was incomplete when the defect was collapsed by the membrane itself and when the rate of resorption was so rapid than expected. The cause of the failure in GBR and GTR procedure is that 1) the membrane was not tightly seal the bony defects. If the sealing was not perfect, fibrous connective tissue infiltrate into the defect and inhibit the new bone formation and regeneration. 2) the membrane was too tightly attached to the tissue and then there was no space to be regenerated. In conclusion, the requirements of the membrane for periodontal tissue and bone regeneration are the biocompatibility, degree of sealingness, malleability. space making and manipulation. In this animal study. space making for new bone and periodontal ligament, and sealing the space might be the most important point for successful accomplishment of GBR and GTR.

  • PDF

Retrospective Clinical Study on Marginal Bone Loss of Implants with Guided Bone Regeneration (골유도재생술과 동시에 식립한 임플란트의 변연골 흡수량에 대한 후향적 고찰)

  • Park, Seul-Ji;Seon, Hwa-Gyeong;Koh, Se-Wook;Chee, Young-Deok
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.34 no.6
    • /
    • pp.440-448
    • /
    • 2012
  • Purpose: The purpose of this study was to evaluate marginal bone loss of the alveolar crest on implants with or without guided bone regeneration and variables that have influenced. Methods: The clinical evaluation were performed for survival rate and marginal bone loss of 161 endosseous implants installed with guided bone regeneration (GBR) in 83 patients from September 2009 to October 2010 in relation to sex and age of patients, position of implant, implant system, length and diameter of implant. Study group (n=42) implant with GBR procedure, control group (n=41) implant without GBR technique. Simultaneous GBR approach using resorbable membranes combined with autogenous bone graft or freeze-dried bone allograft or combination. Radiographic examinations were conducted at healing abutment connection and latest visit. Marginal bone level was measured. Results: Mean marginal bone loss was 0.73 mm in study group, 0.63 mm in control group. Implants in maxillary anterior area (1.21 mm) were statistically significant in study group (P<0.05), maxillary posterior area (0.81 mm) in control group (P<0.05). Mean marginal bone loss 1.47 mm for implants with diameter 3.4 mm, 0.83 mm for implants of control group with diameter 4.0 mm (P<0.05). Some graft materials showed an increased marginal bone loss but no statistically significant influence of sex, implant type or length. Conclusion: According to these findings, this study demonstrated the amount of marginal bone loss around implant has maintained a relative stable during follow-up periods. We conclude that implants with GBR had similar survival rate and crestal bone level compared with implants in native bone.

Biomaterial development for oral and maxillofacial bone regeneration

  • Sulzer, Lindsay S. Karfeld;Weber, Franz E.
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.38 no.5
    • /
    • pp.264-270
    • /
    • 2012
  • Many oral and maxillofacial bone defects are not self-healing. Guided bone regeneration (GBR), which uses a barrier membrane to prevent the soft tissues from invading the defect to enable slower-growing bone cells to penetrate the area, was developed as a therapy in the 1980s. Although there has been some success with GBR in some clinical situations, better treatments are needed. This review discusses the concept of GBR focusing on bioactive membranes that incorporate osteoconductive materials, growth factors and cells for improved oral and maxillofacial bone regeneration.

Implant placement after guided bone regeneration (GBR) in severe defected mandibular alveolar ridge: case report (심하게 결손된 하악 치조골에서 골유도재생술(GBR) 후 임플란트의 식립: 증례보고)

  • Chee, Young-Deok;Yu, Tae-Hoon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.30 no.2
    • /
    • pp.184-191
    • /
    • 2014
  • In the mandibular posterior molar area, ridge deficiency is an unfortunate obstacle in the field of implant dentistry. Many techniques are available to rebuild the deficient ridge. Selection and necessity of these techniques are associated with significant morbidity and often require a second surgical site. With the advent of guided bone regeneration (GBR), one may now graft the deficient ridge with decreased morbidity and without a second surgical site. In this case, guided bone regeneration procedures were performed with a combination of allograft, xenograft, and alloplast, excepting autogerous bone at severe defected mandibular alveolar ridge and then placed to the implant successfully. We report that implant placement were good in two cases.

Guided bone regeneration

  • Kim, Young-Kyun;Ku, Jeong-Kui
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.46 no.5
    • /
    • pp.361-366
    • /
    • 2020
  • Guided bone regeneration (GBR) is a surgical procedure that utilizes bone grafts with barrier membranes to reconstruct small defects around dental implants. This procedure is commonly deployed on dehiscence or fenestration defects ≥2 mm, and mixing with autogenous bone is recommended on larger defects. Tension-free primary closure is a critical factor to prevent wound dehiscence, which is critical cause of GBR failure. A barrier membrane should be rigidly fixed without mobility. If the barrier is exposed, closed monitoring should be utilized to prevent secondary infection.

Effectiveness of dental implantation with the partial split-flap technique on vertical guided bone regeneration: a retrospective study

  • Cho, Young-Dan;Kim, Sungtae;Ku, Young
    • Journal of Periodontal and Implant Science
    • /
    • v.51 no.6
    • /
    • pp.433-443
    • /
    • 2021
  • Purpose: This study aimed to evaluate the effectiveness of the partial split-flap technique with a K-incision on vertical guided bone regeneration (vGBR) and to retrospectively analyze the clinical and radiographic outcomes of dental implantation using this approach. Methods: In total, 78 patients who received 104 dental implants with vGBR, categorized as (1) pre-GBR and post-implantation and (2) simultaneous GBR and implantation, were enrolled. Data analysis was based on periapical radiographs, clinical photos, and dental records. The 2-sample t-test was used to compare the 2 surgical procedures. Results: The baseline vertical bone level, augmented bone height (ABH), and treatment duration were significantly higher in the pre-GBR procedure group. The survival rates of the implants were 96.1% and 94.8% in implant- and patient-based analyses, respectively. In Cox regression analysis, high rates of implant failure were found in the presence of ABH of ≥4 mm, smoking, and diabetes. Conclusions: Within the limitations of this retrospective study, the partial split-flap technique using a K-incision for vGBR showed stable clinical outcomes and favorable dental implant survival.

The effect of maintenance period of non-resorbable membrane on bone regeneration in rabbit calvarial defects (가토 두개골 결손부에서 비흡수성 차단막의 유지 기간에 따른 골조직 형성효과)

  • Jung, Min-Gu;Jang, Hyun-Seon;Kim, Byung-Ock
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.3
    • /
    • pp.543-551
    • /
    • 2007
  • When clinicians faced with an insufficient volume of supporting bone on ideally esthetic and bio-mechanical position for dental implantation, guided bone regeneration(GBR) was indicated. Although GBR has wide application at clinic, proper time of membrane removal remains qustionable in using non-resorbable membrane, such as non-expanded polytetrafluoroethylene(PTFE), The aim of this study was to compare the effect of maintenance period of PTFE membrane on bone regeneration in rabbit calvarial defects. Eight adult New Zealand white female rabbits were used in this study. Four defects were surgically made in their calvaria. Using a trephine bur, 4 'through and through' defects were created and classified into 3 groups, which were consisted of control group(no graft), experimental group 1(autogenous bone)and experimental group 2(deproteinized bovine bone; $OCS-B^{(R)}$). The defects were covered with PTFE membrane($Cytoplast^{(R)}$). Membranes were removed after 1, 2, 4 and 8 weeks post-GBR procedure in 2 rabbits repectively, All rabbits were sacrificed after 8 week post-GBR procedure. Specimens were harvested and observed histologically. The results were as follow; 1) The use of graft material and membrane was necessary in GBR procedure. 2) When PTFE membranes were removed early, the most favorable bone regeneration was revealed in experimental group T, followed by experimental group II and control group. 3) On GBR, it is recommended that membrane should maintain for 4 weeks with autogenous graft. As well, the use of xenograft need longer maintenance period than autogenous bone. Further evaluations will be needed, such as histomorphologic research, more species and different kinds of graft materials. And on the basis of these studies, clinical researches would be required.

Simultaneous Implant Placement with Modified Ridge Splitting/Expansion Technique in the Narrow Edentulous Alveolar Ridge : 3 Cases Report (좁은 치조골에 변형된 치조능 분할술/확장술을 이용한 임플란트 동시 식립 : 3 가지 증례보고)

  • Lee, Jong-Bin;Lee, Jae-Hong;Kim, Young-Taek
    • The Journal of the Korean dental association
    • /
    • v.53 no.8
    • /
    • pp.545-557
    • /
    • 2015
  • The modified ridge splitting/expansion technique combined with guided bone regeneration (GBR) for implant surgery is used to expand the narrow and atrophied edentulous alveolar ridge. Also, the simultaneous implant placement after ridge splitting/expansion technique can reduce the treatment and healing time. This case report includes three patients with a narrow edentulous alveolar ridge of the 2 to 4mm. All three patients underwent a fracture of thin buccal cortical bone plate, and these defects were corrected by the use of the guided bone regeneration (GBR). After 7 to 18 months, all surgical area was stable, and all implant showed a good healing state on the clinical and radiographic examination. In conclusion, though this surgical method is technique sensitive, the modified ridge splitting/expansion technique combined with GBR for implant surgery is recommended for a horizontal augmentation in the narrow edentulous alveolar ridge.