• Title/Summary/Keyword: Guide nozzle shape

Search Result 12, Processing Time 0.029 seconds

Influence of guide vane shape on the performance and internal flow of a cross flow wind turbine

  • Son, Sung-Woo;Singh, Patrick Mark;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.163-169
    • /
    • 2013
  • In order to make the vertical-axis cross flow wind turbine commercially feasible, a guide vane is adopted and the effect of the guide vane shape is examined in order to improve the wind turbine performance. CFD analysis on the performance and internal flow of the turbine is carried out for the wind turbine model. The result shows that when the guide nozzle is installed, almost over two times of power coefficient are achieved in comparison with the case of no guide nozzle installation. The guide nozzle acts as a role of suppressing the flow resistance at the blade passage, which is found when the guide nozzle is installed. Moreover, in this study, two kinds of the guide vane with a straight type and a curved type are adopted and compared. The curved guide vane nozzle produces higher power coefficient in comparison with that of straight guide vane nozzle.

Effect of Guide Nozzle Shape on the Performance Improvement of a Very Low Head Cross Flow Turbine

  • Chen, Zhenmu;Singh, Patrick Mark;Choi, Young-Do
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.5
    • /
    • pp.19-26
    • /
    • 2014
  • The cross flow turbine attracts more and more attention for its relatively wide operating range and simple structure. In this study, a novel type of micro cross flow turbine is developed for application to a step in an irrigational channel. The head of the turbine is only H=4.3m and the turbine inlet channel is open ducted type, which has barely been studied. The efficiency of the turbine with inlet open duct channel is relatively low. Therefore, a guide nozzle on the turbine inlet is attached to improve the performance of the turbine. The guide nozzle shapes are investigated to find the best shape for the turbine. The guide nozzle plays an important role on directing flow at the runner entry, and it also decreases the negative torque loss by reducing the pressure difference in Region 1. There is 12.5% of efficiency improvement by attaching a well shaped guide nozzle on the turbine inlet.

Effects of an Inlet Guide Vane on the Flowrate Distribution Characteristics of the Nozzle Exit in a Defrost Duct System (성에제거 덕트 입구 가이드베인 형상이 노즐출구 유량분포특성에 미치는 영향)

  • Kim, Duck-Jin;Lee, Jee-Keun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.88-96
    • /
    • 2008
  • Effects of the duct inlet guide vane on the flowrate distribution characteristics of the defroster nozzle exit in a defrost duct system were investigated experimentally to design the optimum heating, ventilation and air conditioning (HVAC) system applied in an automotive compartment. A 3-dimensional hot-wire anemometer system was used to measure the velocity field in the vicinity of the defroster nozzle jet flow and the velocity distributions near the windshield interior surface. At first, two cases of with- and without-duct inlet guide vanes were considered as the test condition, and then three cases of the duct inlet guide vane were tested to determine the optimum guide vane shape and their positions. The arrangement of the duct inlet guide vanes has an effect on the improved flowrate distribution at the defroster nozzle exit and near the windshield interior surface. However, the application of the lots of guide vane to control the flow direction leads to increase the flow resistance, resulting in the decreased flowrate issuing from the defroster nozzle. The shape of the duct inlet guide vane affects not only the flowrate distribution between the driver side and the assistant driver side but also the reduction of the flow resistance in the defrost duct system.

A Study on the Development of Cross-flow Type Vertical Axis Wind Turbine (횡류형 수직축 풍력터빈 개발에 관한 연구)

  • Hwang, Yeong-Cheol;Choi, Young-Do;Kim, Ill-Soo;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.493-493
    • /
    • 2009
  • Recently, small vertical axis wind turbine attracts attention because of its clean, renewable and abundant energy resources to develop. Therefore, a cross-flow type wind turbine is proposed for small wind turbine development in this study because the turbine has relatively simple structure and high possibility of applying to small wind turbine. The purpose of this study is to investigate the effect of the turbine‘s structural configuration on the performance and internal flow characteristics of the cross-flow turbine model using CFD analysis. The results show that guide nozzle should be adopted to improve the performance of the turbine. Optimization of the nozzle shape will be key-importance for the high performance of the turbine.

  • PDF

Depressurized Circulating Water Channel Design Using CFD (수치 해석을 이용한 감압 회류 수조 설계)

  • 부경태;조희상;신수철
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.4
    • /
    • pp.22-29
    • /
    • 2003
  • New high-speed depressurized circulating water channel was designed by using the CFD code. Flow in the channel has free surface and pressure in the test section can be depressed. In this study, Flow separation and bubble occurrence were considered in designing the contraction nozzle shape for better flow uniformity Tn the test section. To supplement velocity defect due to the free surface, nozzle injection system more effective in high-speed flow was installed instead of drum system. Necessary power and injection techniques were proposed. And guide vane arrangement was analyzed to reduce the flow resistance and keep quiet free surface from ´surging´. Wave absorber was devised to reduce the wave resistance and to prevent the entrainment of air to the diffuser.

Pitched Roof-Building Integrated Wind Turbine System Performance Estimation (건물 지붕 구조를 활용한 건물일체형 풍력발전시스템의 성능 예측)

  • Choi, Hyung-Sik;Chang, Ho-Nam
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.324-327
    • /
    • 2008
  • We simulated the performance improvement of a wind turbine installed on the pitched roof-building(apartment in urban area, 50m height). A nozzle shape wind guide is added on the roof of a model apartment. The nozzle-diifuser structure effects for the free stream wind (average 4m/s, 50m height in Incheon) is studied by a basic CFD analysis. This paper examines the effects of roof structure on the wind velocity and the wind distortion effects by a front building. The possible wind power generation capacity on building roof in urban is calculated.

  • PDF

Numerical Analysis of Flow Uniformity in Selective Catalytic Reduction (SCR) Process Using Computational Fluid Dynamics (CFD)

  • Shon, Byung-Hyun
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.295-306
    • /
    • 2022
  • The NOx removal performance of the SCR process depends on various factors such as catalytic factors (catalyst composition, shape, space velocity, etc.), temperature and flow rate distribution of the exhaust gas. Among them, the uniformity of the flow flowing into the catalyst bed plays the most important role. In this study, the flow characteristics in the SCR reactor in the design stage were simulated using a three-dimensional numerical analysis technique to confirm the uniformity of the airflow. Due to the limitation of the installation space, the shape of the inlet duct was compared with the two types of inlet duct shape because there were many curved sections of the inlet duct and the duct size margin was not large. The effect of inlet duct shape, guide vane or mixer installation, and venturi shape change on SCR reactor internal flow, airflow uniformity, and space utilization rate of ammonia concentration were studied. It was found that the uniformity of the airflow reaching the catalyst layer was greatly improved when an inlet duct with a shape that could suppress drift was applied and guide vanes were installed in the curved part of the inlet duct to properly distribute the process gas. In addition, the space utilization rate was greatly improved when the duct at the rear of the nozzle was applied as a venturi type rather than a mixer for uniform distribution of ammonia gas.

Numerical Analysis for Improvement of Windshield Defrost Performance of Electric Vehicle (전기자동차 전면유리 제상성능 개선을 위한 전산수치 해석)

  • Kim, Hyun-Il;Kim, Jae-Sung;Kim, Myung-Il;Lee, Jae Yeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.477-484
    • /
    • 2019
  • As the residence time in the vehicle increases, the passenger desires a pleasant and stable riding environment in addition to the high driving performance of the vehicle. The windshield defrosting performance is one of the performance requirements that is essential for driver's safe driving. In order to improve the defrosting performance of the windshield of a vehicle, relevant elements such as the shape of the defrost nozzle should be appropriately designed. In this paper, CFD based numerical analysis is conducted to improve defrost performance of small electric vehicles. The defrost performance analysis was performed by changing the angle of the defrost nozzle and the guide vane that spray hot air to the windshield of the vehicle. Numerical simulation results show that the defrosting performance is best when the defrost nozzle angle is $70^{\circ}$ and the guide vane installation angle is $60^{\circ}$. Based on the analytical results, the defrosting experiment was performed by fabricating the defrost nozzle and the guide vane. As a result of the experiment, it is confirmed that the frost of windshield is removed by 80% within 20 minutes, and it is judged that the defrost performance satisfying the FVMSS 103 specification is secured.

A Study on Flow Velocity Distribution at Inlet and Exit of Diesel Particulate Filter with L-Shape Inlet Connector Using Automatic Measurement (측정자동화에 의한 입구연결부 형상이 L-형인 디젤매연필터 입.출구에서의 유속 분포에 관한 연구)

  • Lee, Choong-Hoon;Bae, Sang-Hong;Choi, Ung;Lee, Su-Ryong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.4
    • /
    • pp.93-100
    • /
    • 2007
  • The flow velocity distribution at inlet and exit of Diesel Particulate Filter(DPF) by fabricating L-shape connector with the DPF was measured using a Pitot-tube and 2-D transverse machine. An adaptor designed for making the Pitot tube probe access to the inlet and exit of the DPF was connected with the inlet and exit flange of the DPF, respectively. The Pitot tube which was mounted in the 2-D positioning machine could access to the inlet and exit of the DPF through the rectangular window of the adaptor. The L-shape connector in the DPF inlet has a flow guide which is a perforated steel pipe. The flow velocity distribution at the inlet of the DPF showed a chaotic velocity distribution which is different from that with a diffuser type connector. The velocity distribution at the exit of the DPF showed a crown shape which is similar to that of the diffuser type connector. The velocity distribution at the exit of DPF showed different patterns according to the air flow rate.

A Numerical Study on the Basic Design of Scrubber for Marine Diesel Engines (선박 디젤기관 스크러버의 기초설계에 관한 수치적 연구)

  • Lee, Won-Ju;Kim, In-Su;Choi, Yong-Seok;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.5
    • /
    • pp.549-557
    • /
    • 2017
  • Numerical studies have been carried out on scrubbers, which are after-treatment devices to satisfy strengthened emission regulations for sulfur dioxide and particulate matter. We investigated the problems with existing scrubbers through numerical analysis and designed and analyzed a new swirl-type scrubber that could solve these problems. As a result, with the swirl-type scrubber, exhaust gas formed a vortex in the lower part of the device, and some of this gas was released along the guide vane through the bottom surface. In this case, the pressure gradient in the vertical direction was not large, but a pressure difference between the inside and outside of the baffle was generated. The shape of the exhaust gas stream was investigated, and when water was not sprayed, the exhaust gas flowed constantly to the outlet along the guide vane, in contrast to when water was sprayed. It was confirmed that the shape of the flow was influenced by the guide vane, nozzle arrangement and water pressure. In the case of the swirl-type scrubber, impact on engine back-pressure was minimal, because differential pressure at the inlet and outlet was less than half of that with a conventional scrubber.