• 제목/요약/키워드: Guidance Performance

검색결과 739건 처리시간 0.029초

수동 유도 미사일 제어를 위한 선형화된 곡률 유도 알고리즘 (A linearized curvature guidance algorithm for a passive homing missile)

  • 신용준;김경근;박진배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.245-248
    • /
    • 1996
  • This paper suggests a new concept for missile guidance control, called linearized common curvature guidance law that enhances the probability to kill a target. The proposed guidance system is composed of two switching modes; one for the midcourse guidance and the other for the terminal guidance, which is switched by a specified critical value (.epsilon.). And the system and the commands are formulated and its simulations are provided in comparison with the conventional commanded line of sight guidance algorithm. Miss distance and angle of attack are denoted as performance of parameters. This new concept, common curvature guidance algorithm, revises the navigation guidance and accompanies, various considerations.

  • PDF

ANALYSIS ON GENERALIZED IMPACT ANGLE CONTROL GUIDANCE LAW

  • LEE, YONG-IN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제19권3호
    • /
    • pp.327-364
    • /
    • 2015
  • In this paper, a generalized guidance law with an arbitrary pair of guidance coefficients for impact angle control is proposed. Under the assumptions of a stationary target and a lag-free missile with constant speed, necessary conditions for the guidance coefficients to satisfy the required terminal constraints are obtained by deriving an explicit closed-form solution. Moreover, optimality of the generalized impact-angle control guidance law is discussed. By solving an inverse optimal control problem for the guidance law, it is found that the generalized guidance law can minimize a certain quadratic performance index. Finally, analytic solutions of the generalized guidance law for a first-order lag system are investigated. By solving a third-order linear time-varying ordinary differential equation, the blowing-up phenomenon of the guidance loop as the missile approaches the target is mathematically proved. Moreover, it is found that terminal misses due to the system lag are expressed in terms of the guidance coefficients, homing geometry, and the ratio of time-to-go to system time constant.

표적 Glint의 효과적인 필터링에 의한 CLOS 유도성능 개선 (CLOS Guidance Performance Improvement with Effective Glint Filtering)

  • 신상진;송택렬
    • 제어로봇시스템학회논문지
    • /
    • 제7권8호
    • /
    • pp.711-715
    • /
    • 2001
  • In this paper, an effective filter structure for filtering of target glint in tracking radar systems is used to improve the performance of CLOS(Command to Line-Of-Sight) guidance. The filter decouples range and angel channels to that it has a sound mathematical basis as well as computation efficiency as applied to the IMM algorithm. The effective filter structure in conjunction with CLOS guidance is tested by a series of simulation runs and it is shown to have superior performance compared with the other filter structures.

  • PDF

New guidance law for air-to-air missile

  • Baba, Yoriaki;Takehira, Tetsuya
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국제학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.456-461
    • /
    • 1993
  • In this paper, a new guidance law for a short-range air-to-air missile with constant thrust is presented. It is essentially based on the concept of proportional navigation. First, the theoretical guidance law is derived. Then, we show the technique for practical implementation of the guidance law. By a computer simulation, it is shown that the new guidance law gives better performance than the conventional proportional navigation.

  • PDF

자동조종장치 지연을 고려한 미사일의 이동구간 유도법칙 (A receding horizon guidance law considering autopilot lag)

  • 한창운
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 A
    • /
    • pp.115-118
    • /
    • 2003
  • In recent years, a receding horizon guidance law based on receding horizon control and optimal control is proposed. A receding horizon guidance law considering autopilot lag and constraints is proposed. The performance of receding horizon guidance law in the presence of target maneuvers is confirmed by simulation results. Through many simulation, a suitable selection of weighting matrix can minimize effect of disturbance, target acceleration. which is meaning of this paper.

  • PDF

Nonlinear Model Predictive Control for Multiple UAVs Formation Using Passive Sensing

  • Shin, Hyo-Sang;Thak, Min-Jea;Kim, Hyoun-Jin
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권1호
    • /
    • pp.16-23
    • /
    • 2011
  • In this paper, nonlinear model predictive control (NMPC) is addressed to develop formation guidance for multiple unmanned aerial vehicles. An NMPC algorithm predicts the behavior of a system over a receding time horizon, and the NMPC generates the optimal control commands for the horizon. The first input command is, then, applied to the system and this procedure repeats at each time step. The input constraint and state constraint for formation flight and inter-collision avoidance are considered in the proposed NMPC framework. The performance of NMPC for formation guidance critically degrades when there exists a communication failure. In order to address this problem, the modified optimal guidance law using only line-of-sight, relative distance, and own motion information is presented. If this information can be measured or estimated, the proposed formation guidance is sustainable with the communication failure. The performance of this approach is validated by numerical simulations.

북서태평양 태풍 강도 예측 컨센서스 기법 (A Consensus Technique for Tropical Cyclone Intensity Prediction over the Western North Pacific)

  • 오유정;문일주;이우정
    • 대기
    • /
    • 제28권3호
    • /
    • pp.291-303
    • /
    • 2018
  • In this study, a new consensus technique for predicting tropical cyclone (TC) intensity in the western North Pacific was developed. The most important feature of the present consensus model is to select and combine the guidance numerical models with the best performance in the previous years based on various evaluation criteria and averaging methods. Specifically, the performance of the guidance models was evaluated using both the mean absolute error and the correlation coefficient for each forecast lead time, and the number of the numerical models used for the consensus model was not fixed. In averaging multiple models, both simple and weighted methods are used. These approaches are important because that the performance of the available guidance models differs according to forecast lead time and is changing every year. In particular, this study develops both a multi-consensus model (M-CON), which constructs the best consensus models with the lowest error for each forecast lead time, and a single best consensus model (S-CON) having the lowest 72-hour cumulative mean error, through on training process. The evaluation results of the selected consensus models for the training and forecast periods reveal that the M-CON and S-CON outperform the individual best-performance guidance models. In particular, the M-CON showed the best overall performance, having advantages in the early stages of prediction. This study finally suggests that forecaster needs to use the latest evaluation results of the guidance models every year rather than rely on the well-known accuracy of models for a long time to reduce prediction error.

Multiple UAVs Nonlinear Guidance Laws for Stationary Target Observation with Waypoint Incidence Angle Constraint

  • Kim, Mingu;Kim, Youdan
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권1호
    • /
    • pp.67-74
    • /
    • 2013
  • Nonlinear guidance law combined with a pseudo pursuit guidance is proposed, to perform stationary target observation mission. Multiple UAVs are considered, with waypoint constraint. The whole guidance is divided into two steps: firstly, waypoint approach, with specified incidence angle; and secondly, loitering around the stationary target. Geometric approach is used to consider the constraint on the waypoint, and a specified phase angle between the loitering UAV and the approaching UAV. In the waypoint approach step, UAVs fly to the waypoint using the pseudo pursuit guidance law. After passing the waypoint, UAVs turn around the target, using a distance error dynamics-based guidance law. Numerical simulations are performed, to verify the performance of the proposed guidance law.

충돌 자세각 제한조건을 갖는 종단 유도를 위한 시변 편향 비례항법 (Time-varying biased proportional navigation for terminal guidance with impact attitude angle constraint)

  • 김병수;이보형;이장규;김삼수;조현진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.355-358
    • /
    • 1996
  • The primary objective of guidance system is to generate suitable commands so that the pursuer comes closer to its target. It is necessary, however, in the guidance of a certain pursuer that the attitude angle at impact should be within a prescribed range in addition to specification on the miss distance. These guidance requirements can not be satisfied by the general guidance laws developed for miss distance minimization. Compared with the demand in many applications, the guidance laws dealing with impact attitude angle constraint are not easily found. In this paper, biased PNG laws are proposed to obtain the guidance purposes. By Lyapunov method, it is shown that the pursuer can intercept the target with a prescribed attitude angle under the assumption that the pursuer is sufficiently fast and the target maneuver is negligible. The simulation results are presented to demonstrate the performance of the suggested guidance laws.

  • PDF

A Hybrid Guidance Law for a Strapdown Seeker to Maintain Lock-on Conditions against High Speed Targets

  • Lee, Chae Heun;Hyun, Chul;Lee, Jang Gyu;Choi, Jin Yung;Sung, Sangkyung
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권1호
    • /
    • pp.190-196
    • /
    • 2013
  • This paper proposes a new guidance law, which considers the Field of View (FOV) of the seeker when a missile has a strapdown seeker mounted instead of a gimbal seeker. When a strapdown seeker, which has a narrow FOV, is used for tracking a target, the FOV of the seeker is an important consideration for guidance performance metrics such as miss distance. We propose a new guidance law called hybrid guidance (HG) to address the shortcomings of conventional guidance laws such as proportional navigation guidance (PNG), which cannot maintain lock-on conditions against high speed targets due to the narrow FOV of the strapdown seeker. The aim of the HG law is to null miss distance and to maintain the look angle within the FOV of the strapdown seeker. In order to achieve this goal, we combine two guidance laws in the HG law. One is a PNG law to null the LOS rate, and the other is a sliding mode guidance (SMG) law derived to keep the look angle within the FOV by employing a Lyapunov-like function with a sliding mode control methodology. We also propose a method to switch these two guidance laws at certain look angles for better guidance performance.