• Title/Summary/Keyword: Guidance/Navigation

Search Result 327, Processing Time 0.025 seconds

REPRESENTATION OF NAVIGATION INFORMATION FOR VISUAL CAR NAVIGATION SYSTEM

  • Joo, In-Hak;Lee, Seung-Yong;Cho, Seong-Ik
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.508-511
    • /
    • 2007
  • Car navigation system is one of the most important applications in telematics. A newest trend of car navigation system is using real video captured by camera equipped on the vehicle, because video can overcome the semantic gap between map and real world. In this paper, we suggest a visual car navigation system that visually represents navigation information or route guidance. It can improve drivers' understanding about real world by capturing real-time video and displaying navigation information overlaid on it. Main services of the visual car navigation system are graphical turn guidance and lane change guidance. We suggest the system architecture that implements the services by integrating conventional route finding and guidance, computer vision functions, and augmented reality display functions. What we designed as a core part of the system is visual navigation controller, which controls other modules and dynamically determines visual representation methods of navigation information according to a determination rule based on current location and driving circumstances. We briefly show the implementation of system.

  • PDF

주행 유도 방향과 퍼지 제어를 이용한 이동 로봇의 자율 주행 (Autonomous Navigation for a Mobile Robot Using Navigation Guidance Direction and Fuzzy Control)

  • 박지관;신진호
    • 전기학회논문지
    • /
    • 제63권1호
    • /
    • pp.108-114
    • /
    • 2014
  • This paper proposes a generation method of a navigation guidance direction and a fuzzy controller to achieve the autonomous navigation of a mobile robot using a particle swarm optimization(PSO) scheme in unknown environments. The proposed navigation guidance direction is the direction that leads a mobile robot to arrive a target point simultaneously with avoiding obstacles efficiently according to the surrounding local informations. It is generated by selecting the most suitable direction of the many directions in the surrounding environment using a particle swarm optimization scheme. Also, a robot can reach a target point with avoiding the various obstacles by controlling the robot so that it can move from its current orientation to the navigation guidance direction using the proposed fuzzy controller. Simulation results are presented to show the feasibility and validity of the proposed robot navigation scheme.

Servicing Photographs for Route Guidance in Navigation Systems

  • Sung Kyung Bok;Yoo Jae Jun
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.72-76
    • /
    • 2004
  • For successful route guidance, navigation systems should provide to users more realistic and actual information such as photographs than those in either 2-dimensional and 3-dimensional models. In this paper, we propose a method for servicing photographs for route guidance in navigation systems. The method includes how to acquire photographs with the most successful view for the guidance, how to construct link information among them and navigational map data, and how to provide the images to users efficiently.

  • PDF

단거리 지대공 유도무기에서의 순비례항법 유도법칙과 진비례항법 유도법칙의 성능비교 (Performance Comparison between True Proportional Navigation Guidance Law and Pure Proportional Navigation Guidance Law)

  • 유의환;전칠환;이연석
    • 제어로봇시스템학회논문지
    • /
    • 제13권6호
    • /
    • pp.525-530
    • /
    • 2007
  • In this paper, a performance comparison between traditional TPN (true proportional navigation) guidance law and PPN(pure proportional navigation) guidance law is made, based on a short range surface-to-air missile simulation program. This simulation program has a nonlinear aerodynamic missile model, a roll stabilized autopilot, a nonlinear radar model, and a target model, According to the simulation results, the PPN guidance law has better performances than TPN guidance law under the condition of evasive target.

비례항법을 이용한 무인 항공기의 최적 충돌 회피 기동 (Proportional Navigation-Based Optimal Collision Avoidance for UAVs)

  • 한수철;방효충
    • 제어로봇시스템학회논문지
    • /
    • 제10권11호
    • /
    • pp.1065-1070
    • /
    • 2004
  • Optimal collision avoidance algorithm for unmanned aerial vehicles based on proportional navigation guidance law is investigated this paper. Although proportional navigation guidance law is widely used in missile guidance problems, it can be used in collision avoidance problem by guiding the relative velocity vector to collision avoidance vector. The optimal navigation coefficient can be obtained if an obstacle if an obstacle moves at constant velocity vector. The stability of the proposed algorithm is also investigated. The stability can be obtained by choosing a proper navigation coefficient.

Conceptual Design of Navigation Safety Module for S2 Service Operation of the Korean e-Navigation System

  • Yoo, Yun-Ja;Kim, Tae-Goun;Song, Chae-Uk;Hu, Shouhu;Moon, Serng-Bae
    • 한국항해항만학회지
    • /
    • 제41권5호
    • /
    • pp.277-286
    • /
    • 2017
  • IMO introduced e-Navigation concept to improve the efficiency of ship operation, port operation, and ship navigation technology. IMO proposed sixteen MSPs (Maritime Service Portfolio) applicable to the ships and onshore in case of e-Navigation implementation. In order to meet the demands of the international society, the system implementation work for the Korean e-Navigation has been specified. The Korean e-Navigation system has five service categories: the S2 service category, which is a ship anomaly monitoring service, is a service that classifies emergency levels according to the degree of abnormal condition when a ship has an abnormality in ship operation, and provides guidance for emergency situations. The navigation safety module is a sub-module of the S2 service that determines the emergency level in case of navigation equipment malfunctioning, engine or steering gear failure during navigation. It provides emergency response guidance based on emergency level to the abnormal ship. If an abnormal condition occurs during the ship operation, first, the ship shall determine the emergency level, according to the degree of abnormality of the ship. Second, an emergency response guidance is generated based on the determined emergency level, and the guidance is transmitted to the ship, which helps the navigators prevent accidents and not to spread. In this study, the operational concept for the implementation of the Korean e-Navigation system is designed and the concept is focused on the navigation safety module of S2 service.

단거리 지대공 유도무기에서의 시선지령식 유도법칙과 비례항법 유도법칙의 성능비교 (Performance Comparisons between Command to Line-of-Sight Guidance Law and Proportional Navigation Guidance Law in Short Range Surface-to-Air Missile)

  • 이연석;유악환;김양우
    • 제어로봇시스템학회논문지
    • /
    • 제13권3호
    • /
    • pp.273-278
    • /
    • 2007
  • In this paper, a performance comparison between CLOS(Command to Line-of-Sight) guidance law and PN(Proportional Navigation) guidance law is made, based on a short range surface-to-air missile simulation program called KNUCLOS. This simulation program has a full nonlinear aerodynamic missile model, a tracker model for missile and target, and target model. According to the simulation results, the PN guidance law has a better performance than CLOS guidance law under various target speed.

선박의 항로추종을 위한 LOS 가이던스 시스템의 제안 (A Proposal of an LOS Guidance System of a Ship for Path Following)

  • 김종화;이병결
    • 제어로봇시스템학회논문지
    • /
    • 제11권4호
    • /
    • pp.363-368
    • /
    • 2005
  • This paper proposes an LOS(line-of-sight) guidance system of a ship for path following. From the viewpoint of a control configuration, guidance is a special type of compensation algorithm that is placed in front of the controller to accomplish navigational objects. A guidance system generates a reference trajectory for trajectory tracking or path control and decides the desired velocity, position and heading angle. A control system executes commands based on a reliable guidance law during navigation. An LOS vector from the vessel to a point on the path between two way-points in straight-line navigation or a point among turning circle in turning navigation is selected, and then a heading angle is calculated to converge the desired path based on the LOS vector. The LOS guidance law is defined for the straight-line and the turning circle, respectively. The effectiveness of the suggested LOS guidance system is assured through computer simulation.

Guidance Law for a Flight Vehicle after Burnout

  • Dohi, Naoto;Baba, Yoriaki;Takano, Hiroyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.82.2-82
    • /
    • 2002
  • The new guidance law for a missile with the varying velocity after the rocket motor burned out is presented. This guidance is mechanized by combining the proportional navigation and the pure pursuit navigation. Some simulations are performed and then the simulation results show that the guidance law presented is effective even if the vehicle speed decreases significantly and has higher off-boresight ability than the proportional navigation.

  • PDF

Development of an IGVM Integrated Navigation System for Vehicular Lane-Level Guidance Services

  • Cho, Seong Yun
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제5권3호
    • /
    • pp.119-129
    • /
    • 2016
  • This paper presents an integrated navigation system for accurate navigation solution-based safety and convenience services in the vehicular augmented reality (AR)-head up display (HUD) system. For lane-level guidance service, especially, an accurate navigation system is essential. To achieve this, an inertial navigation system (INS)/global positioning system (GPS)/vision/digital map (IGVM) integrated navigation system has been developing. In this paper, the concept of the integrated navigation system is introduced and is implemented based on a multi-model switching filter and vehicle status decided by using the GPS data and inertial measurement unit (IMU) measurements. The performance of the implemented navigation system is verified experimentally.