• Title/Summary/Keyword: Guard robot

Search Result 17, Processing Time 0.022 seconds

Shock Response Analysis of Guard Robot Considering the Elastic Effect (탄성 효과를 고려한 감시 로봇 모델의 충격 응답 해석)

  • Kim, Jung-Chan;Jeong, W.B.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.107-110
    • /
    • 2006
  • In this paper, shock response analysis considering the elastic effects of guard robot is performed using computer simulations when a machine gun of guard robot fires a shot continuously. The bodies of guard robot are modelled in flexible multi-body. The results of its analysis is compared with results of rigid bodies. The tools of computer simulation is used in Multi-body dynamics program.

  • PDF

Mobility Improvement of a Jumping Robot using Conical Spring with Variable Length Endtip (가변길이 엔드팁을 갖는 원추형 스프링을 이용한 도약로봇의 이동성 향상)

  • Kim, Ki-Seok;Kim, Byeong-Sang;Song, Jae-Bok;Yim, Chung-Hyuk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.11
    • /
    • pp.1108-1114
    • /
    • 2009
  • Mobility is one of the most important features for a guard robot since it should be operated in rough places. A wheel-based mobile robot capable of jumping is an appropriate structure for a guard robot because it can easily satisfy the requirements for small guard robots. The jumping robot can reach a higher place more rapidly than other locomotion methods. This research proposes a small robot equipped with the jumping mechanism based on the conical spring with the variable length endtip. The variable length endtip enables the independent control of the jump force and jump angle which are related to the jump height and jump distance, respectively. Various experiments demonstrated that the proposed jumping mechanism can provide the independent control of jump force and jump angle, and improve the mobility of a small robot to overcome an obstacle. Furthermore, a combination of the jumping mechanism and the PSD sensor to measure the distance to the step enable the jumping robot to autonomously climb stairs.

Design and Implementation of OPC UA-based Collaborative Robot Guard System Using Sensor and Camera Vision (센서 및 카메라 비전을 활용한 OPC UA 기반 협동로봇 가드 시스템의 설계 및 구현)

  • Kim, Jeehyeong;Jeong, Jongpil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.6
    • /
    • pp.47-55
    • /
    • 2019
  • The robot is the creation of new markets and various cooperation according to the manufacturing paradigm shift. Cooperative management easy for existing industrial robots, robots work on productivity, manpower to replace the robot in every industry cooperation for the purpose of and demand increases.to exist But the industrial robot at the scene of the cooperation working due to accidents are frequent, threatening the safety of the operator. Of industrial site is configured with a robot in an environment ensuring the safety of the operator to and confidence to communicate that can do the possibility of action.Robot guard system of the need for development cooperation. The robot's cooperation through the sensors and computer vision task within a radius of the double to prevent accidents and accidents should reduce the risk. International protocol for a variety of industrial production equipment and communications opc ua system based on ultrasonic sensors and cnn to (Convolution Neural Network) for video analytics. We suggest the cooperation with the robot guard system. Robots in a proposed system is unsafe situation of workers evaluating the possibility of control.

A Study on Operational Concept of Military Guard and Surveillance Robots (군 경계 및 감시로봇 운용개념 연구)

  • Seo, Dong-Cheul;Lee, Woo-Chan;Hwang, Chun-Sik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.5-14
    • /
    • 2008
  • In this paper, we propose operational concepts and technology requirements for guard and surveillance robots in military field. After surveying on current trend of guard robots, we present an operational scenario and technology requirements. To begin with, we discriminate the use of fixed type guard robots(fixed robots) and mobile guard and surveillance robots(mobile robots). Fixed robots are used for substituting daily guard by human soldier. In contrast, mobile robots are used for compensating shadow area where not to be covered by fixed type robots. To be specific, mobile robots adopt communication relays to extend operational range and sensor networks to collecting information. In addition, we present technology requirements composed of wireless communication system, platform, sensor nodes, unmanned driving technology, power supply system and IFF etc. In conclusion, in order to maximize co-operational functionality, fixed robots and mobile robots should be tightly related.

Development of Conical Spring-based Jumping Mechanism for a Portable Robot (소형로봇을 위한 원추형 스프링 기반의 도약 메커니즘의 개발)

  • Kim, Byeong-Sang;Lee, Jang-Woon;Kim, Hyun-Jung;Vu, Quy-Hung;Song, Jae-Bok
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1195-1200
    • /
    • 2007
  • It is desirable that the guard robot should be small-sized and light-weighted to increase its portability. In addition, it should be able to overcome a relatively high obstacle to cope with different situations. The jumping robot can reach a higher place more rapidly than other locomotion methods. This research proposes the jumping mechanism based on the conical spring for a small robot. Both the clutch mechanism and conical spring are incorporated into the jumping mechanism. In the clutch mechanism, the spring can be immediately compressed and released by one actuator with the planetary gear train and one-way clutch. The robot equipped with the jumping mechanism can overcome the obstacles which are higher than its height. In this paper, the characteristic of the conical spring for the jumping robot is determined and the small-sized, lightweight jumping mechanism is developed. The validity of the jumping mechanism was verified by various experiments. It is shown that the robot using this mechanism can provide good mobility in the rough terrain.

  • PDF

A Small Robot Based on Hybrid Wheel-Track Mechanism (복합 바퀴-궤도 메커니즘 기반의 소형 로봇)

  • Lee, Jang-Woon;Kim, Byeong-Sang;Song, Jae-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.6
    • /
    • pp.545-551
    • /
    • 2009
  • A small guard robot working indoors or outdoors can be used to report various information on its environment to an operator. The guard robot should be small-sized and lightweight to increase its portability. In addition, it should be able to overcome a relatively high obstacle to cope with various situations. To satisfy these requirements, this paper presents a small robot equipped with a novel hybrid wheel and track mechanism that can select wheels or tracks depending on the situation. The robot folds the tracks into the body in the wheel mode and only wheels are active with the tracks immobilized, which results in the fast moving speed. In the track mode, the tracks are extended to keep in contact with the ground. Furthermore, this research proposes the belt length maintenance mechanism by which the belt length is kept constant in either the wheel or track mode. Various experiments demonstrate that the proposed robot can move fast by using wheels on the smooth terrain and overcome obstacles by using tracks on the rough terrain.

Development of Software Architecture for Modular Personal Robot (모듈형 퍼스널 로봇의 소프트웨어 아키택처 개발)

  • Kim Hong-Seok;Yang Kwang-Woong;Choi Moo-Sung;Won Dae-Heui;Lee Ho-Gil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1264-1270
    • /
    • 2004
  • In this paper, a standard robot design methodology is suggested and a software architecture for modular robot is introduced. The robot is modularized by several functions, and the module is produced according to a standard proposal. Each module requires standard interface for communicate in distributed environments. Software architecture was developed to support distributed component environment, and application development support tools are developed for user convenience. Many robot softwares are developed in a library form so that, they are being used widely robot application software development. Also a device driver was developed for the mostly used sensor and actuator. It is verified that the modular robot can be applied in various fields through guide, errand and guard scenario.

Simulation based Design of a Mobile Surveillance Robot (모바일 경계로봇의 시뮬레이션 기반 설계)

  • Hwang, Ki-Sang;Park, Kyu-Jin;Kim, Do-Hyun;Kim, Sung-Soo;Park, Sung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1179-1184
    • /
    • 2007
  • An unmaned surveillance robot consists of rifle, laser receiver, thermal imager, color CCD camera, and laser illuminator. A human guard can be replaced with such a robot to take care dangerous surveillance tasks. Currently most of surveillance robots are mounded at a fixed post to take care of surveillance tasks. In order to watch blind areas, it is necessary to modify such a surveillance robot to become a mobile robot. In this paper, simulation based design procedure of mobile surveillance robot has been introduced. 3D CAD geometry model has been produced using Pro-Engineer. Required pen and tilt motor capacities have been analyzed using ADAMS inverse dynamics analysis. A target tracking and stabilization control algorithm of the mobile surveillance robot has been developed in order to stabilize the system from the motion of the vehicle which experiences the rough terrain. ADAMS-Matlab co-simulation has been also carried out to validate the proposed target tracking and stabilization algorithm.

  • PDF

The Study of Digitalization of Analog Gauge using Image Processing (이미지 처리를 이용한 아날로그 게이지 디지털화에 관한 연구)

  • Seon-Deok Kim;Cherl-O Bae;Kyung-Min Park;Jae-Hoon Jee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.4
    • /
    • pp.389-394
    • /
    • 2023
  • In recent years, use of machine automation is rising in the industry. Ships also obtain machine condition information from sensor as digital information. However, on ships, crew members regularly surveil the engine room to check the condition of equipment and their information through analog gauges. This is a time-consuming and tedious process and poses safety risks to the crew while on surveillance. To address this, engine room surveillance using an autonomous mobile robot is being actively explored as a solution because it can reduce time, costs, and the safety risks for crew. Analog gauge reading using an autonomous mobile robot requires digitization for the robot to recognize the gauge value. In this study, image processing techniques were applied to achieve this. Analog gauge images were subjected to image preprocessing to remove noise and highlight their features. The center point, indicator point, minimum value and maximum value of the analog gauge were detected through image processing. Through the straight line connecting these points, the angle from the minimum value to the maximum value and the angle from the minimum value to indicator point were obtained. The obtained angle is digitized as the value currently indicated by the analog gauge through a formula. It was confirmed from the experiments that the digitization of the analog gauge using image processing was successful, indicating the equivalent current value shown by the gauge. When applied to surveillance robots, this algorithm can minimize safety risks and time and opportunity costs of crew members for engine room surveillance.