• Title/Summary/Keyword: Guamsan Tuff

Search Result 2, Processing Time 0.017 seconds

SHRIMP U-Pb Dating and Volcanic Processes of the Volcanic Rocks in the Guamsan Caldera, Cheongsong, Korea (청송 구암산 칼데라 화산암류의 SHRIMP U-Pb 연령측정과 화산과정)

  • Hwang, Sang Koo;Jo, In Hwa;Yi, Keewook
    • Economic and Environmental Geology
    • /
    • v.50 no.6
    • /
    • pp.467-476
    • /
    • 2017
  • Volcanic rocks related to the Guamsan cadera, which find in the southeastern Cheongsong, are divided into Volcanic breccia, Guamsan Tuff and Post-collapse intrusions. We determined their eruption, intrusion and caldera-forming timings based on SHRIMP U-Pb zircon dating. The dating results yield earlier eruption age of $63.77{\pm}0.94Ma$ from the lower ash-flow tuff and an later eruption age of $60.1{\pm}1.8Ma$ from the upper ash-flow tuff of the Guamsam Tuff, and intrusion age of $60.65{\pm}0.95Ma$ from the rhyolite ring dyke of the Post-collapse intrusions. The age data suggest that the Guamsan caldera is formed in 60.65~60.1 Ma between eruption of the upper ash-flow tuff and intrusion of the rhyolite ring dyke. The Guamsan cadera exhibits the volcanic processes of a perfect igneous cycle passing from ash-flow eruptions through caldera collapse to ring intrusions during 63.77~60.1 Ma.

Eruptive Phases and Volcanic Processes of the Guamsan Caldera, Southeastern Cheongsong, Korea (구암산 칼데라의 분출상과 화산과정)

  • ;;;A.J. Reedman
    • The Journal of the Petrological Society of Korea
    • /
    • v.11 no.2
    • /
    • pp.74-89
    • /
    • 2002
  • Rock units, relating with the Guamsan caldera, are composed of Guamsan Tuff and rhyolitic intrusions. The Guamsan Tuff consists almost entirely of ash-flow tuffs with some volcanic breccias and fallout tuffs. The volcanic breccia comprises block and ash-flow breccias of near-vent facies and caldera-collapse breccia near the ring fracture. The lower ash-flow tuffs are of an expanded pyroclastic flow phase from the pyroclastic flow-forming eruption with an ash-cloud fall phase of the fallout tuffs on the flow units, but the upper ones are of a non-expanded ash-flow phase from the boiling-over eruption. The rhyolitic intrusions are divided into intracaldera intrusions and ring dikes that are subdivided into inner, intermediate and outer dikes. We compile the volcanic processes along a single cycle of cadela development from the eruptive phases in the Guamsan area. The explosive eruptions began with block and ash-flow phases from collapse of glowing lava dome caused by Pelean eruption, progressed through expanded pyroclastic flow phases and ash-cloud fallout phases during high column collapse of pyroclastic flow-forming eruption from a single central vent. This was followed by non-expanded ash-flow phases due to boiling-over eruption from multiple ring fissure vents. The caldera collapse induced the translation into ring-fissure vents from a single central vent in the earlier eruption. After the boiling-over eruption, there followed an effusive phase in which rhyolitic magma was injected and erupted to be progressively emplaced as small plugs/dikes and ring dikes with many lava domes on the surface. Finally rhyodacitic magma was on emplaced as a series of dikes along the junction of both outer and intermediate dikes on the southwestern side of the caldela.