• Title/Summary/Keyword: Guaianolides

Search Result 6, Processing Time 0.028 seconds

Butyrylcholinesterase Inhibitory Guaianolides from Amberboa ramosa

  • Khan Sher Bahadar;Haq Azhar-ul;Perveen Shagufta;Afza Nighat;Malik Abdul;Nawaz Sarfraz Ahmad;Shah Muhammad Raza;Choudhary Muhammad lqbal
    • Archives of Pharmacal Research
    • /
    • v.28 no.2
    • /
    • pp.172-176
    • /
    • 2005
  • Phytochemical investigation of the whole plant of Amberboa ramosa led to the isolation of six sesquiterpene lactones which could be identified as $8{\alpha}$-hydroxy-$11{\beta}$-methyl-$1{\alpha}H,\;5{\alpha}H,\;6{\beta}H,\;7{\alpha}H,\;11{\alpha}H-guai-10(14)$, 4(15)-dien-6, 12-olide(2), $3{\beta},\;8{\alpha}-dihydroxy-11{\alpha}-methyl-1{\alpha}H,\;5{\alpha}H,\;6{\beta}H,\;7{\alpha}H,\;11{\beta}H-guai-10(14)$, 4(15)-dien-6, 12-olide (2), $3{\beta},\;4{\alpha},\;8{\alpha}-trihydroxy-4{\beta}(hydroxymethyl)-1{\alpha}H,\;5{\alpha}H,\;6{\beta}H,\;7{\alpha}H-guai-10(14)$, 11(13)-dien-6, 12-olide (3), $3{\beta},\;4{\alpha},\;8{\alpha}-trihydroxy-4{\beta}-(chloromethyl)-1{\alpha}H,\;5{\alpha}H,\;6{\beta}H,\;7{\alpha}H-guai-10(14)$, 11(13)-dien-6, 12-olide(4), $3{\beta},\;4{\alpha},\;dihydroxy-4{\beta}-(hydroxymethyl)-1{\alpha}H,\;5{\alpha}H,\;6{\beta}H,\;7{\alpha}H-guai-10(14)$, 11(13)-dien-6, 12-olide(5), $3{\beta},\;4{\alpha}-dihydroxy-4{\beta}-(chloromethyl)-8{\alpha}-(4-hydroxymethacrylate)-1{\alpha}H,\;5{\alpha}H,\;6{\beta}H,\;7{\alpha}H-guai-10(14)$, 11(13)-dien-6, 12-olide (6) by spectroscopic methods. All of them showed inhibitory potential against butyrylcholinesterase.

Isolation of Magnolialide and Artesin from Cichorium intybus: Revised Structures of Sesquiterpene Lactones

  • Park, Hee-Juhn;Kwon, Sang-Hyuk;Yoo, Ki-Oug;Jung, Won-Tae;Lee, Kyung-Tae;Kim, Joo-Il;Han, Yong-Nam
    • Natural Product Sciences
    • /
    • v.6 no.2
    • /
    • pp.86-90
    • /
    • 2000
  • Two known eudesmanolides, magnolialide and artesin, were isolated from the roots of Cichorium intybus. Their structures were confirmed by HMBC and NOESY NMR spectral interpretation. Therefore, guaianolides and eudesmanolides that have been previously reported should be revised.

  • PDF

Structural Analogues of Cumambrin B from the Flower of Chrysanthemum boreale

  • Jang, Dae-Sik;Yang, Min-Suk;Ha, Tae-Jung;Park, Ki-Hun
    • Archives of Pharmacal Research
    • /
    • v.21 no.5
    • /
    • pp.591-594
    • /
    • 1998
  • The structural analogues of cumambrin B(1, 2, 3, 4) were isolated from the flower of Chrysnathemum boreale Makino. The structures of compounds were determined by two-dimensional $^{1}H-^{1}H$ COSY and $^{13}C-^{1}H$ COSY spectra with the aid of homonuclear and heteronuclear double resonance experiment. The stereochemistry of compounds has been verified from single crystal X-ray diffraction of cumambrin A(2). the antimicrobial activities of these guaianolides have been studied.

  • PDF

Sesquiterpene Glycosides from the whole Plant Extract of Youngia japonica (뽀리뱅이 전초로부터 분리한 Sesquiterpene 배당체)

  • Kim, Mi-Ri;Cha, Mi-Ran;Choi, Yeon-Hee;Choi, Chun-Whan;Choi, Sang-Un;Kim, Young-Sup;Kim, Young-Kyoon;Kim, Young-Ho;Ryu, Shi-Yong
    • Korean Journal of Pharmacognosy
    • /
    • v.41 no.2
    • /
    • pp.103-107
    • /
    • 2010
  • Extensive phytochemical investigation of the methanol extract from the whole plant of Youngia japonica (Asteraceae) led us to the isolation of a new guaiane-type sesquiterpene (1), together with three related guaianolides, youngiajaponicoside A (2), crepiside H (3) and crepeside E (4). The chemical structure of 1 was elucidated by the aid of spectroscopic analyses including 2D-NMR experiments (COSY, HMBC, HMQC and ROESY). The isolated components (1-4) were evaluated for the inhibitory effect on the proliferation of four cultured human tumor cell lines such as A549, SK-OV-3, SK-MEL-2 and HCT-15, in vitro.

Isolation of Guaianolides with ACAT Inhibitory Activity from the Leaves and Stems of Chrysanthemum boreale Makino (산국의 잎과 줄기에서 ACAT 저해활성을 가지는 Guaianolides의 분리)

  • Lee, Jong Rok;Park, Moon Ki
    • Journal of Environmental Science International
    • /
    • v.26 no.11
    • /
    • pp.1275-1284
    • /
    • 2017
  • Acyltransferase (AT) catalyzes the transfer of an acyl moiety from acyl-coenzyme A (acyl-CoA) to an acceptor. ATs play important roles in the maintenance of homeostasis in the human body and have been linked to various diseases; therefore, several ATs have been proposed as potential targets for the treatment or prevention of such diseases. The AT family includes acyl-CoA:cholesterol AT (ACAT), diacylglycerol AT, and monoacylglycerol AT for the metabolism of lipids. Furthermore, recent molecular biological studies revealed the existence of their isozymes with distinct functions in the body. ACAT plays a critical role in the formation of cholesteryl esters from cholesterol and fatty acids, and is a potential target for treating hypercholesterolemia. During an experiment designed to discover biologically active compounds from herbal medicines, we isolated two known guaianolide sesquiterpene lactones from Chrysanthemum boreale Makino (Compositae). The lactones were characterized from their spectroscopic data (NMR, IR, MASS). These compounds were subjected to ACAT inhibition assay. Here, we report the isolation and structural elucidation of the compounds 8-o-acetyl-2-methoxy-10-hydroxy-3,11(13)-guaiadiene-12,6-olide and 8-acetyl-3,10-hydroxy-4(15),11(13)-guaiadiene-12,6-olide. In the ACAT inhibition assay, compound 1 showed strong inhibitory activity, with an $IC_{50}$ value $45{\mu}g/mL$, whereas compound 2 did not exhibit significant inhibitory activity with an over $100{\mu}g/mL$.