• Title/Summary/Keyword: Growth velocity

Search Result 489, Processing Time 0.028 seconds

Effect of crystal and crucible rotations on the mass transfer in magnetohydrodynamic Czochralski crystal growth of silicon (자기장이 가하여진 초크랄스키 실리콘 단결정 성장에서 질량전달에 미치는 성장결정과 도가니의 회전효과)

  • 김창녕
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.4
    • /
    • pp.536-547
    • /
    • 1997
  • For various angular velocities of crucible and crystal, the characteristics of melt flows, temperatures and concentrations of oxygen are numerically studied in the Czochralski furnace with a uniform axial magnetic field. Buoyancy effect due to the heating of crucible wall and thermocapillary effect due to the temperature gradient at the free surface, can be differentiably suppressed by the centrifugal forces due to the rotations of the crucible and crystal. The most important factor which yields the centrifugal forces is the rotation velocity of the crucible, that influences the fields of velocities, temperatures and concentrations. In the case that the crucible rotation velocity is not high, the rotations of the crystal gives rise to the centrifugal forces effectively.

  • PDF

Effect of applied magnetic fields on oxygen transport in magnetic Czochralski growth of silicon (Czochralski 방법에 의한 실리콘 단결정 성장에서 자장에 의한 산소의 전달 현상 제어)

  • Chang Nyung Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.3
    • /
    • pp.210-222
    • /
    • 1994
  • The characteristics of flows, temperatures, and concentrations of oxygen are numerically studies in the Czochralski furnace with a uniform axial magnetic field. Important governing factors to the flow fields include buoyancy, thermocapillarity, centrifugal force, magnetic force, diffusion and segregation coefficients of the oxygen, evaporation coefficient in the form of SiO, and ablation rate of crucible wall. With an assumption that the flow fields have reached the steady state, which means that two velocity components in the meridional plane and circumferential velocity, temperatures, electric current intensity become non-transient, then unsteady concentration field of oxygen has been analyzed with an initially uniform oxygen concentration. Oxygen transports due to convection and diffusion in the Czochralski flow field and oxygen flux through the growing crystal surface has been investigated.

  • PDF

Effect of applied magnetic fields on Czochralski single crystal growth (Part II) (Czochralski 단결성 성장특성제어를 위한 자장형태에 관한 연구 (Part 2))

  • Chang Nyung Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.1
    • /
    • pp.46-56
    • /
    • 1994
  • The characteristics of flows, temperatures, concentrations of the boron are numerically studied when uniform axial magnetic fields are applied in the Czechralski crucible. The to governing factors to the flow regimes are buoyancy, thermocapillarity, centrifugal forces, magnetic forces, diffusion coefficient and segregation coefficient of the boron. Since the concentration of the boron is so low that buoyancy effects are negligible, it cannot affect the flow and temperature fields. From the fact that the flow fields are rotationally symmetric, two velocity components in the meridional plane and the circumferential velocity are calculated together with the temperature in the steady state. Based on the known velocity and temperature distributions the unsteady concentration distributions of the boron are calculated. As the strength of the magnetic is increased, the flow velocities are decreased. Circumferential velocities are large near the crucible side-wall and in the region below the rotating crystal. Steep temperatures gradient near the edge of the rotating crystal causes the Marangoni convection. It has been found out that the convection characteristics affects the unsteady transport phenomena of the boron.

  • PDF

A Simple Parameterization for the Rising Velocity of Bubbles in a Liquid Pool

  • Park, Sung Hoon;Park, Changhwan;Lee, JinYong;Lee, Byungchul
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.692-699
    • /
    • 2017
  • The determination of the shape and rising velocity of gas bubbles in a liquid pool is of great importance in analyzing the radioactive aerosol emissions from nuclear power plant accidents in terms of the fission product release rate and the pool scrubbing efficiency of radioactive aerosols. This article suggests a simple parameterization for the gas bubble rising velocity as a function of the volume-equivalent bubble diameter; this parameterization does not require prior knowledge of bubble shape. This is more convenient than previously suggested parameterizations because it is given as a single explicit formula. It is also shown that a bubble shape diagram, which is very similar to the Grace's diagram, can be easily generated using the parameterization suggested in this article. Furthermore, the boundaries among the three bubble shape regimes in the $E_o-R_e$ plane and the condition for the bypass of the spheroidal regime can be delineated directly from the parameterization formula. Therefore, the parameterization suggested in this article appears to be useful not only in easily determining the bubble rising velocity (e.g., in postulated severe accident analysis codes) but also in understanding the trend of bubble shape change due to bubble growth.

Evaluation of the creep damage of the Type 316LN stainless steel by the ultrasonic wave velocity (초음파 속도를 이용한 Type 316LN 스테인리스 강의 크리프 손상 평가)

  • Yi Won;Noh Kyung-Yong;Yun Song-Nam;Kim Woo-Gon
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.818-823
    • /
    • 2005
  • Creep damage is one of the mosl important characteristics for the stability of high temperature structures such as huge energy converting facilities. Creep failure of Type 316LN stainless steel is highly correlated to generation and growth of the voids. In this paper, in order to investigate the correlation of creep rupture time and ultrasonic parameters (group velocity, angular velocity), creep-damaged Type 316LN specimens and measurements for the ultrasonic parameters were made. However, bi-directional measurements were applied along the load direction and the perpendicular direction to the load line by means of the contact type probe of which the central frequencies are 10MHz, 15MHz and 20MHz. Analyzing the angular velocities of the ultrasonic signals obtained from the load direction, it was confirmed that the angular velocities were declined as the creep time passed when 15MHz and 20MHz probes were used. Also, the group velocities were declined for all three frequencies as the creep time increased. Thus, positive feasibility for the creep damage evaluation by means of the angular and group velocities was confirmed. Moreover, result of analysis for the ultrasonic signal which was obtained from the perpendicular direction upon the angular and group velocities indicated little variation for both of the angular and group velocities. Therefore, the creep damage is likely to represent anisotropic itself.

  • PDF

Why Are Cool Structures in the Universe Usually Filamentary?

  • Song, Inhyeok;Choe, Gwang Son;Yi, Sibaek;Jun, Hongdal
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.48.4-48.4
    • /
    • 2019
  • Small-scale shear flows are ubiquitous in the universe, and astrophysical plasmas are often magnetized. We study the thermal condensation instability in magnetized plasmas with shear flows in relation to filamentary structure formation in cool structures in the universe, representatively solar prominences and supernova remnants. A linear stability analysis is extensively performed in the framework of magnetohydrodynamics (MHD) with radiative cooling, plasma heating and anisotropic thermal conduction to find the eigenfrequencies and eigenfunctions for the unstable modes. For a shear velocity less than the Alfven velocity of the background plasma, the eigenvalue with the maximum growth rate is found to correspond to a thermal condensation mode, for which the density and temperature variations are anti-phased (of opposite signs). Only when the shear velocity in the k-direction is near zero, the eigenfunctions for the condensation mode are of smooth sinusoidal forms. Otherwise each eigenfunction for density and temperature is singular and of a discrete form like delta functions. Our results indicate that any non-uniform velocity field with a magnitude larger than a millionth of the Alfven velocity can generate discrete eigenfunctions of the condensation mode. We therefore suggest that condensation at discrete layers or threads should be quite a natural and universal process whenever a thermal instability arises in magnetized plasmas.

  • PDF

Temperature and stress dependence of prism plane slip dislocation velocity in sapphire ($\alpha$-Al$_2$O$_3$) single crystals (사파이어($\alpha$-Al$_2$O$_3$) 단결성에 있어 prism plane slip 전위속도의 온도 및 응력의존성)

  • 윤석영;이종영
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.4
    • /
    • pp.337-343
    • /
    • 2000
  • Prism plane slip {11$\bar{2}$0}1/3{$\bar{1}$120} location velocity in sapphire ($\alpha$-Al$_2$O$_3$) single crystals was measured by etch-pit method. The dislocation velocities were measured as a function of temperature and stress between $1150^{\circ}C$ and $1400^{\circ}C$ for engineering stresses in the range 140 to 250 MPa. The dependence of temperature and stress in dislocation velocity was investigated. The activation energy for dislocation velocity was determined to be 4.2$\pm$0.4 eV. On the other hand, the stress exponent (m) describing the stress dependence of dislocation velocities was in the range of 4.5$\pm$0.8. Through this experiments, it was reconfirmed that the basal plane in sapphire single crystals has the 3-fold symmetry.

  • PDF

Menarcheal timing and growth curve shape during the adolescent growth spurt (신장의 사춘기 성장 동안 초경 발생 시기와 성장 곡선의 형태에 관한 연구)

  • Ahn, Yong-Soo;Lee, Ki-Soo;Nam, Jong-Hyun;Kang, Yoon-Goo
    • The korean journal of orthodontics
    • /
    • v.39 no.3
    • /
    • pp.159-167
    • /
    • 2009
  • Objective: This study investigated the onset, peak height velocity (PHV) and end of adolescent growth spurt as well as menarcheal timing deduced from surveying accumulative height growth over many years. Methods: Ninety six students of Samgoe high school between 1st and 3rd grade that were in good health participated in the research. A survey questionnaire was distributed to examine the students' health status and menarche timing. Results: Adolescent growth spurt typically began at the age of 9.9 and reached a PHV at the age of 11.6. The growth spurt ended at the age of 14.1 on average. The average age of menarche was 12.6 years, which was about one year after the PHV of adolescent growth spurt. In most cases, menarche came after PHV. But in 24% of the students, menarche and PHV was nearly coincident or menarche preceded PHV. The growth curves were classified into four types. A typical adolescent growth spurt showed one PHV on graph that drastically drops after the PHV. However, there were cases with two PHVs. Conclusions: The results indicate that individual growth patterns show large individual differences, however the categorization into the various growth curves may aid in predicting individual growth patterns.

A Comparison of the Past Physical Growth, Eating Habits and Dietary Intake by Obesity Index of Sixth Grade Primary School Students in Seoul (서울시내 일부 초등학교 6학년생들의 체격에 따른 성장변화, 생활습관, 식이섭취상태에 관한 비교연구)

  • 김은경;문현경
    • Korean Journal of Community Nutrition
    • /
    • v.6 no.3
    • /
    • pp.475-485
    • /
    • 2001
  • This study was conducted to find the differences in the physical changes, eating habits and dietary intake by obseity index of sixth grade primary school students is Seoul.The subjests were classified into three groups, an underweight group(90% under, 12l Ug), normal group(between 90-110%, 153, NG), and obese group(110% over, 91, OG) according to WLI(Weight-Length Index)calculated with their present (6th grade) height and weight. The physical growth of the subjects was generally good, although problems of both underweight and obesity were existed together. The mean heigh growth velocity per year, weight growth velocity per year and WLI changes per year of OG were higher than those of the other groups(p〈0.01). The past physical status of the three groups were maintained from 1 st grade to sixth grade, As eating habits and lifestyles, they were not statistically significant but there were some differences among the three groups. More students of the UG disliked a certain food than those of the other groups. UG liked fried or roasted foods more(p〈0.001). NG tended to eat three meals more irregularly. OG tended to have meal times more regularly and do more regular exercise than the other groups. The dietary intakes of three groups were generally good. They were not statically significant among the three groups. With theses difference among the three groups, it is recommended to educate about unbalanced diet for the underweight group, regularity, of meals for the normal group, doing exercise for the obese for the obese group, and increasing Ca and vitamin A intake for most students, As the physical status for th lower grades have been maintained up to the sixth grade, nutrition education programs should be started at the lower grades in the elementary school.

  • PDF

Variations in Growth Characteristics and Stress-wave Velocities of Zelkova serrata Trees from Eight Half-sib Families Planted in Three Different Initial Spacings

  • Prasetyo, Agung;Endo, Ryota;Takashima, Yuya;Aiso, Haruna;Hidayati, Fanny;Tanabe, Jun;Ishiguri, Futoshi;Iizuka, Kazuya;Yokota, Shinso
    • Journal of Forest and Environmental Science
    • /
    • v.31 no.3
    • /
    • pp.235-240
    • /
    • 2015
  • Zelkova serrata is an important hardwood species for the timber industry in Japan. Tree breeding programs for this species have mainly focused on growth characteristics such as stem diameter (D), tree height (TH), stem form, and branching. In order to fulfill timber industry needs, wood quality improvement should be included in the tree breeding program of this species. In the present study, growth characteristics, such as D and TH, and the stress-wave velocity (SWV), which is highly correlated with Young's modulus of wood, were measured for 20-year-old Z. serrata from eight half-sib families planted in a progeny test site with three different initial spacings. Significant differences in all the measured characteristics were found among the eight half-sib families. The variance components of the half-sib families for D, TH, and SWV were 27.2%, 47.3%, and 33.5%, respectively. These results indicate that all the measured characteristics of this species could be improved by tree breeding programs. In addition, only low correlation coefficients were obtained between the growth characteristics and SWV, indicating that extensive selection on SWV in tree breeding programs may not always lead to a reduction in yield volume.