• Title/Summary/Keyword: Growth substances

Search Result 697, Processing Time 0.036 seconds

Bioactive Utility of the Extracts from Rhus verniciflua Stokes (RVS) : Biological Function of the Extracts from RVS (옻나무 추출물의 생리활성 이용에 대한 연구 : 옻나무 추출물의 생물학적 기능)

  • Lim, Kye-Taek;Lee, Jeong-Chae
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.238-245
    • /
    • 1999
  • Antioxidative effects of the water or ethanol extracts from Rhus verniciflua Stokes (RVS) were measured by protection against hydroxyl radicals in mouse brain tissue culture. In the water extracts from RVS, cell viabilities were estimated 60.0, 66.0, 72.0, 84.0 and 90.0% at addition of 1, 2, 4, 7 and $10{\mu}L$, respectively, compared with GO (20 mU/mL) alone. The cell viability in the ethanol extracts was similarly with water extracts. In the antitumor effects, the results showed that percentages of the HeLa cell death were approximately 24% for 12 hrs, 57% for 48 hrs at addition of 10%/well ethanol extracts respectively. To know inhibition of tumor growth, in vivo, mice (BALB/c) were inoculated with 0.25 mL CT-26 $(1{\times}10^6\;cells/mL)$ subcutaneously. After the generation of tumor, the results of RVS extracts (ethanol, water) injection showed generally that the tumor size in BALB/c was reduced. For physicochemical characterization of the RVS extracts, purified substances of water or ethanol extracts were analized with SDS-PAGE and ICP spectrometer. In electrophoresis, gel showed 2 bands (210, 230 KDa). The results of ICP verified that RVS extracts contain $Cu^{2+}$ in both samples. Conclusively, this substance might be a laccase which has a biological effective function, as a natural bioactive substance.

  • PDF

Selective Algicidal Effects of a Newly Developed GreenTD against Red Tide Harmful Alga (GreenTD 물질을 이용한 유해 적조 발생 종의 선택적 살조능 평가)

  • Lee, Minji;Shin, Juyong;Kim, Jin Ho;Lim, Young Kyun;Cho, Hoon;Baek, Seung Ho
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.3
    • /
    • pp.359-369
    • /
    • 2018
  • Harmful algal blooms (HABs) are a serious problem for public health and fisheries industries, thus there exists a need to investigate the possible ways for effective control of HABs. In the present study, we investigated the algicidal effects of a newly developed GreenTD against the HABs (Chattonella marina, Heterosigma akashiwo, Cochlodinium polykriokides, and Heterocapsa circularisquama) and non-HABs (Chaetoceros simplex, Skeletonema sp. and Tetraselmis sp.), which is focused on the different population density and concentration gradients of algicidal substances. The time series viability of target alga was assessed based on the activity of Chl. a photosynthetic efficiency in terms of $F_v/F_m$, and in vivo fluorescence (FSU). Effective control of Raphidophyta, C. marina and H. akashiwo was achieved at a GreenTD concentration of $0.5{\mu}gL^{-1}$ and $0.2{\mu}gL^{-1}$, respectively, and regrowth of both the species was not observed even after 14 days. The inhibitory ratio of the dinoflagellate, C. polykriokides was more than 80% at $0.2{\mu}gL^{-1}$ of GreenTD. H. circularisquama was constantly affected in the presence of $0.2{\mu}gL^{-1}$ of GreenTD in the high- and low-population density experimental groups. On the other hand, diatoms, C. simplex, and Skeletonema sp. were not significantly affected even in the presence of $0.2{\mu}gL^{-1}$ of GreenTD and exhibited re-growth activity with the passage of incubation time. In particular, green alga Tetraselmis sp. remained unaffected even in the presence of the highest concentration of GreenTD ($1.0{\mu}gL^{-1}$), implying that non-HABs were not greatly influenced by the algicidal substances. As a result, the algicidal activity of GreenTD on the harmful and nonharmful algae was as follows: raphidophyte>dinoflagellates>diatoms>green alga. Consequently, our results indicate that inoculation of GreenTD substances into natural blooms at a threshold concentration ($0.2{\mu}gL^{-1}$) can maximize the algicidal activity against HABs species. If we consider the dilution and diffusion rate in the field application, it is hypothesized that GreenTD will demonstrate economic efficiency, thus leading to effective control against the target HABs in the closed bay.

Crop Injury (Growth Inhibition) Induced by Herbicides and Remedy to Reduce It (제초제(除草劑) 약해발생(藥害發生) 양상(樣相)과 경감대책(輕減對策))

  • Kim, K.U.
    • Korean Journal of Weed Science
    • /
    • v.12 no.3
    • /
    • pp.261-270
    • /
    • 1992
  • Many herbicides that are applied at the soil before weed emergence inhibit plant growth soon after weed germination occurs. Plant growth has been known as an irreversible increase in size as a result of the processes of cell divison and cell enlargement. Herbicides can influence primary growth in which most new plant tissues emerges from meristmatic region by affecting either or both of these processes. Herbicides which have sites of action during interphase($G_1$, S, $G_2$) of cell cycle and cause a subsequent reduction in the observed frequency of mitotic figures can be classified as an inhibitor of mitotic entry. Those herbicides that affect the mitotic sequence(mitosis) by influencing the development of the spindle apparatus or by influencing new cell plate formation should be classified as causing disruption of the mitotic sequence. Sulfonylureas, imidazolinones, chloroacetamides and some others inhibit plant growth by inhibiting the entry of cell into mitosis. The carbamate herbicides asulam, carbetamide, chlorpropham and propham etc. reported to disrupt the mitotic sequence, especially affecting on spindle function, and the dinitroaniline herbicides trifluralin, nitralin, pendimethalin, dinitramine and oryzalin etc. reported to disrupt the mitotic sequence, particularly causing disappearence of microtubles from treated cells due to inhibition of polymerization process. An inhibition of cell enlargement can be made by membrane demage, metabolic changes within cells, or changes in processes necessary for cell yielding. Several herbicides such as diallate, triallate, alachlor, metolachlor and EPTC etc. reported to inhibit cell enlargement, while 2, 4-D has been known to disrupt cell enlargement. One potential danger inherent in the use of soil acting herbicides is that build-up of residues could occur from year to year. In practice, the sort of build-up that would be disastrous is unikely to occur for substances applied at the correct soil concentration. Crop injury caused by soil applied herbicides can be minimized by (1) following the guidance of safe use of herbicides, particularly correct dose at correct time in right crop, (2) by use of safeners which protect crops against injury without protecting any weed ; interactions between herbicides and safeners(antagonists) at target sites do occur probably from the following mechanisms (1) competition for binding site, (2) circumvention of the target site, and (3) compensation of target site, and another mechanism of safener action can be explained by enhancement of glutathione and glutathione related enzyme activity as shown in the protection of rice from pretilachlor injury by safener fenclorim, (3) development of herbicide resistant crops ; development of herbicide-resistant weed biotypes can be explained by either gene pool theory or selection theory which are two most accepted explanations, and on this basis it is likely to develop herbicide-resistant crops of commercial use. Carry-over problems do occur following repeated use of the same herbicide in an extended period of monocropping, and by errors in initial application which lead to accidental and irregular overdosing, and by climatic influence on rates of loss. These problems are usually related to the marked sensitivity of the particular crops to the specific herbicide residues, e.g. wheat/pronamide, barley/napropamid, sugarbeet/ chlorsulfuron, quinclorac/tomato. Relatively-short-residual product, succeeding culture of insensitive crop to specific herbicide, and greater reliance on postemergence herbicide treatments should be alternatives for farmer practices to prevent these problems.

  • PDF

Effect of Perilla Oil in Diet on the Biochemical Property of Cultured Sweet Smelt Plecoglossus altivelis

  • Jeong Bo-Young;Jeong Woo-Geon;Moon Soo-Kyung;Maita Masashi;Ohshima Toshiaki
    • Fisheries and Aquatic Sciences
    • /
    • v.4 no.4
    • /
    • pp.163-170
    • /
    • 2001
  • The effect of perilla oil added in diet on the biochemical properties of cultured sweet smelt, Plecoglossus altivelis, was investigated. The cultured fish were fed two different diets for 8 weeks; a control diet was a commercial diet, which was low in the content of docosa­hexaenoic acid (DHA, 22: 6n-3) and eicosapentaenoic acid (EPA, 20: 5n-3) less than approximately $2\%$ (CO group) and an experimental diet (PO group) was added perilla oil as a lipid source in the diet of the CO group. The PO group was superior in growth rate and feed efficiency compared with CO group. This trend showed markedly in female of both groups. The fatty acid composition in the muscle of PO group was closely related with those of the diet, while those of CO group were not. For plasma components, total cholesterol (CHOU of PO group was higher than that of CO group. Thiobarbituric acid-reactive substances (TBARS), hydroxyl (OH) radical levels and superoxide dismutase (SOD) activity of plasma were higher in PO group than CO group. The intensity of watermelon-like or cucumber-like aroma was much stronger in PO group with higher level of TBARS and OH radical in plasma compared CO group. Survival rate was also high in PO group with high levels of phagocytic rate, CHOL and SOD activity. These results suggest that perilla oil might be usefulness as a lipid source of the cultured sweet smelt diet, in which result in high quality of the cultured fish.

  • PDF

Removal Characteristics of Nitrogen Oxides (NOx) in Low Concentration using Peat-Mixed Media (피트(peat) 혼합담체를 이용한 저농도 질소산화물(NOx) 제거특성)

  • Kang, Young-Heoun;Kim, Deok-Woo;Kang, Seon-Hong;Kwon, Pil-Joo;Kim, Dal-Woo;Hwang, Pil-Gi;Shim, Sang-Bo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.3
    • /
    • pp.330-338
    • /
    • 2010
  • In this study, removal characteristics of nitrogen oxides $(NO_x)$ from road transport by using peat as the packing media for biodegradation have been investigated in the long term. Physicochemical and biological treatment of peatmixed media eliminates any requirement to use chemical substances and also facilitates the biodegradable actions of microorganism. Safe biodegradation of pollutants, no need to apply additional microbes owing to their active growth, and no generation of secondary pollutants were found in this experiment. It was concluded that average removal efficiencies of nitric oxide (NO) and nitrogen dioxide $(NO_2)$ were 80% and 97% respectively with respect to the linear velocity 35~40 mm/s and 0.3 ppm ozone concentration in the long period operation. Inflow concentration of nitric oxide over 0.05 ppm was suitable when pretreated with ozone. Non-ozone stage was performed with linear velocity 20~100 mm/s and then the average removal efficiency of nitric oxide and nitrogen dioxide were 38% and 94% respectively. Other results showed that the apparent static pressure was raised with increases in applied water content and aerial velocity in mixed media during fan operation.

Antagonistic Bacillus species as a biological control of ginseng root rot caused by Fusarium cf. incarnatum

  • Song, Minjae;Yun, Hye Young;Kim, Young Ho
    • Journal of Ginseng Research
    • /
    • v.38 no.2
    • /
    • pp.136-145
    • /
    • 2014
  • Background: This study aimed to develop a biocontrol system for ginseng root rot caused by Fusarium cf. incarnatum. Methods: In total, 392 bacteria isolated from ginseng roots and various soils were screened for their antifungal activity against the fungal pathogen, and a bacterial isolate (B2-5) was selected as a promising candidate for the biocontrol because of the strong antagonistic activity of the bacterial cell suspension and culture filtrate against pathogen. Results: The bacterial isolate B2-5 displayed an enhanced inhibitory activity against the pathogen mycelial growth with a temperature increase to $25^{\circ}C$, produced no pectinase (related to root rotting) an no critical rot symptoms at low [$10^6$ colony-forming units (CFU)/mL] and high ($10^8CFU/mL$) inoculum concentrations. In pot experiments, pretreatment with the bacterial isolate in the presumed optimal time for disease control reduced disease severity significantly with a higher control efficacy at an inoculum concentration of $10^6CFU/mL$ than at $10^8CFU/mL$. The establishment and colonization ability of the bacterial isolates on the ginseng rhizosphere appeared to be higher when both the bacterial isolate and the pathogen were coinoculated than when the bacterial isolate was inoculated alone, suggesting its target-oriented biocontrol activity against the pathogen. Scanning electron microscopy showed that the pathogen hyphae were twisted and shriveled by the bacterial treatment, which may be a symptom of direct damage by antifungal substances. Conclusion: All of these results suggest that the bacterial isolate has good potential as a microbial agent for the biocontrol of the ginseng root rot caused by F. cf. incarnatum.

Physico-chemical attributes, sensory evaluation and oxidative stability of leg meat from broilers supplemented with plant extracts

  • Yang, Eun Ju;Seo, Ye Seul;Dilawar, Muhammad Ammar;Mun, Hong Seok;Park, Hyeoung Seog;Yang, Chul Ju
    • Journal of Animal Science and Technology
    • /
    • v.62 no.5
    • /
    • pp.730-740
    • /
    • 2020
  • This feeding trial was conducted to investigate the effects of Mentha arvensis (MA) and Geranium thunbergii (GT) in drinking water on physicochemical attributes, sensory qualities, proximate analysis and oxidative stability of broiler leg meat. One hundred and twenty broiler chicks were assigned to 1 of 4 dietary treatments for 5 weeks. The dietary treatments were 1) control, 2) T1 (0.1% 1 MA:1 GT), 3) T2 (0.1% 1 MA:4 GT), 4) T3 (0.1% 4 MA: 1 GT). The water holding capacity and cooking loss were improved (p < 0.05) in T2 and T3. The flavor, texture and acceptability of leg meat by consumers were significantly increased in T2 relative to the control (p < 0.05). The crude protein content was increased in T3 while the crude fat decreased in T2 (p < 0.05). Moreover, broilers supplemented with plant extracts had the lowest leg meat TBARS (thiobarbituric acid reactive substances) values after 2 weeks of storage as compared with the control. Total phenolic contents and 1-1-diphenyl 2 picrylhydrazyl (DPPH) activity were also better in the T2 group (p < 0.05) compared with the control, whereas 2,2-Azinobis-3 ethytlbenzothiazoline-6-sulfonic acid (ABTS+) remained unaffected. Overall, these results demonstrate that broiler drinking water with the inclusion of plant extract combination can be used to enhance the oxidative stability, shelf life and quality characteristics of broiler leg meat without compromising the growth performance.

Anti-invasive Activity against Cancer Cells of Phytochemicals in Red Jasmine Rice (Oryza sativa L.)

  • Pintha, Komsak;Yodkeeree, Supachai;Pitchakarn, Pornsirit;Limtrakul, Pornngarm
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4601-4607
    • /
    • 2014
  • Red rice contains pharmacological substances including phenolics, oryzanol, tocotrienol and tocopherol. Recently, red rice extract has been employed as a source of antioxidants for inhibition of tumor growth. This study was carried out to evaluate the anti-invasion effects of red rice extract fractions on cancer cells. It was found that at $100{\mu}g/ml$ of crude ethanolic extract (CEE), hexane fraction (Hex) and dichloromethane fraction (DCM) could reduce HT1080 and MDA-MB-231 cancer cell invasion. Hex and DCM revealed higher potency levels than CEE, whereas an ethyl acetate fraction (EtOAc) had no effect. Gelatin zymography revealed that Hex decreased the secretion and activity of matrix metalloproteinase-2 and -9 (MMP-2 and-9). In contrast, the DCM fraction exhibited slightly effect on MMPs secretion and had no effect on MMPs activity. Collagenase activity was significantly inhibited by the Hex and DCM fractions. High amounts of ${\gamma}$-oryzanol and ${\gamma}$-tocotrienol were found in the Hex and DCM fractions and demonstrated an anti-invasion property. On the other hand, proanthocyanidin was detected only in the CEE fraction and reduced MDA-MB-231 cells invasion property. These observations suggest that proanthocyanidin, ${\gamma}$-oryzanol and ${\gamma}$-tocotrienol in the red rice fractions might be responsible for the anti invasion activity. The red rice extract may have a potential to serve as a food-derived chemotherapeutic agent for cancer patients.

Curcumin and Silibinin Inhibit Telomerase Expression in T47D Human Breast Cancer Cells

  • Nasiri, Marzieh;Zarghami, Nosratollah;Koshki, Kazem Nejati;Mollazadeh, Mahdieh;Moghaddam, Mohammad Pourhassan;Yamchi, Mohammad Rahmati;Esfahlan, Rana Jahanban;Barkhordari, Amin;Alibakhshi, Abbas
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.6
    • /
    • pp.3449-3453
    • /
    • 2013
  • Background: Telomerase has been considered as an attractive molecular target for breast cancer therapy. The main objective of this work is to assess the inhibitory effects of silibinin and curcumin, two herbal substances, on telomerase gene expression in breast cancer cells. Materials and Methods: For determination of cell viability tetrazolium-based assays were conducted after 24, 48, and 72 h exposure times and expression of human telomerase reverse transcriptase gene was measured with real-time PCR. Results: Each compound exerted cytotoxic effects on T47D cells and inhibited telomerase gene expression, both in a time-and dose-dependent manner. The mixture of curcumin and silibinin showed relatively more inhibitory effect on growth of T47D cells and hTERT gene expression as compared with either agent alone. Conclusions: These findings suggest that cell viability along with hTERT gene expression in breast cancer cells could be reduced by curcumin and silibinin.

A Study on the Behavior Change of Zebrafish For Toxicity Evaluation of Residual Psychoactive Medication in Wastewater Treatment Plant Effluent (하수처리시설 방류수 내 잔류 향정신성 의약품의 독성평가를 위한 zebrafish의 행동성 변화 연구)

  • Yoon, Hyojik;Kim, Minjae;Kim, Jongrack;Kim, Sungpyo
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.6
    • /
    • pp.574-579
    • /
    • 2019
  • As interest in health issues increases, it is imperative to ensure good water quality from wastewater treatment plant effluent to preserve environmental health. In particular, currently there is a lack of water ecosystem risk assessment on pharmaceutical substances remaining in effluent. In this study, antidepressant escitalopram (ESC), antiepileptic carbamazepine (CBZ) and lead, which impact the behavior of aquatic organisms, were used to test their impact on the potential behavior of zebrafish. Zebrafish have been widely used in toxicological assessment studies due to the ease of handlinggenerically and genetically. It was possible to observe changes in the growth of organisms through monitoring the embryos' cognitive and behavior assessment. In this study, the embryo lethal dose test showed that the lethal concentration of ESC and CBZ was at 10 ppb, which is below the water quality criterion (100 ppb), increased by 32.5 % and 40 %, respectively. In the cognitive test, it was found that the cognitive ability function decreased by 22 % and 17% for ESC(500 ppb) and CBZ(1,000 ppb) respectively relative to control. Based on these results, it is necessary to initiate efforts to remove these trace pollutants from sewage treatment facilities to protect the health of aquatic organisms.