• Title/Summary/Keyword: Growth rate Constant

Search Result 546, Processing Time 0.029 seconds

Prediction of stress intensity factor range for API 5L grade X65 steel by using GPR and MPMR

  • Murthy, A. Ramachandra;Vishnuvardhan, S.;Saravanan, M.;Gandhi, P.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.5
    • /
    • pp.565-574
    • /
    • 2022
  • The infrastructures such as offshore, bridges, power plant, oil and gas piping and aircraft operate in a harsh environment during their service life. Structural integrity of engineering components used in these industries is paramount for the reliability and economics of operation. Two regression models based on the concept of Gaussian process regression (GPR) and Minimax probability machine regression (MPMR) were developed to predict stress intensity factor range (𝚫K). Both GPR and MPMR are in the frame work of probability distribution. Models were developed by using the fatigue crack growth data in MATLAB by appropriately modifying the tools. Fatigue crack growth experiments were carried out on Eccentrically-loaded Single Edge notch Tension (ESE(T)) specimens made of API 5L X65 Grade steel in inert and corrosive environments (2.0% and 3.5% NaCl). The experiments were carried out under constant amplitude cyclic loading with a stress ratio of 0.1 and 5.0 Hz frequency (inert environment), 0.5 Hz frequency (corrosive environment). Crack growth rate (da/dN) and stress intensity factor range (𝚫K) values were evaluated at incremental values of loading cycle and crack length. About 70 to 75% of the data has been used for training and the remaining for validation of the models. It is observed that the predicted SIF range is in good agreement with the corresponding experimental observations. Further, the performance of the models was assessed with several statistical parameters, namely, Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Coefficient of Efficiency (E), Root Mean Square Error to Observation's Standard Deviation Ratio (RSR), Normalized Mean Bias Error (NMBE), Performance Index (ρ) and Variance Account Factor (VAF).

Ecophysiological Studies on the Population Dynamics of Two Toxic Dinoflagellates Alexandrium tamarense and Alexandrium catenella Isolated from the Southern Coast of Korea -I. Effects of Temperature and Salinity on the Growth (남해연안해역에서 분리한 유독와편모조류 Alexandrium tamarense와 Alexandrium catenella의 개체군 변화에 관한 생리.생태학적 연구 -I. 수온과 염분의 변화에 따른 성장 특성)

  • Oh, Seok-Jin;Park, Ji-A;Kwon, Hyeong-Kyu;Yang, Han-Soeb;Lim, Weol-Ae
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.2
    • /
    • pp.133-141
    • /
    • 2012
  • Effects of temperature and salinity on the growth of the toxic dinoflagellate $Alexandrium$ $tamarense$ and $A.$ $catenella$ isolated from the southern coast of Korea were examined in the laboratory. Growth experiment was conducted under the following combinations of temperature and salinity; 10, 15, 20, 25 and $30^{\circ}C$, 10, 15, 20, 25, 30 and 35 psu at a constant irradiance of 300 ${\mu}mol$ photons $m^{-2}s^{-1}$. Temperature and salinity conditions for maximum growth rate were indicated as follows: temperature $15^{\circ}C$ and salinity 30 psu (0.31 $d^{-1}$) in $A.$ $tamarense$, temperature $25^{\circ}C$ and salinity 30 psu (0.36 $d^{-1}$) in A. catenella. Temperature and salinity ranges for optimum growth condition of two species were $10{\sim}20^{\circ}C$, 25~35 psu and $120{\sim}30^{\circ}C$, 25~35 psu, respectively. The result of two-factor ANOVA indicated significant effects (P<0.001) of temperature and salinity on the growth rate, and two species were more effected by a temperature than a salinity on the growth. In addition, prediction equations were obtained through the multiple regressions of the specific growth rates as ${\mu}=0.04+0.0193T-0.0339S- 0.0005T^2+0.0021S^2+0.00073TS-0.000022T^3-0.000038S^3+0.00000086TS^2-0.0000255T^2S$ in $A.$ $tamarense$ and ${\mu}=1.01-0.1288T-0.0778S+0.0067T^2+0.0038S^2+0.00204TS-0.0001T^3-0.000059S^3-0.0000131TS^2-0.0000392T^2S$ in $A.$ $catenella$. Correlation coefficient between experimental values and simulated values was highly indicated. These results seem to provide information for understanding the spreading mechanism of $A.$ $tamarense$ and $A.$ $catenella$.

Effects of Optical Characteristics on the Growth of Benthic Microalga, Nitzschia sp. and Its Growth Kinetics of Phosphate for Bioremediation (생물적 환경정화를 위한 부착미세조류 Nitzschia sp.의 생장에 미치는 광학적 특성과 그에 따른 인산염 성장 동력학)

  • Oh, Seok-Jin;Kang, In-Seok;Yoon, Yang-Ho;Yang, Han-Soeb;Park, Jong-Sick
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.4
    • /
    • pp.205-212
    • /
    • 2009
  • To suggest possible to bioremediation by benthic microalgae Nitzschia sp. isolated from the Jinhae Bay, the studies investigated the effects o flight quality and quantity on the growth of Nitzschia sp. and its growth kinetics for phosphate investigated. The Nitzschia sp. was cultured under blue (450 nm), yellow (590 nm) and red wavelength (650 nm) using light emitting diode (LED) and mixed wavelengths using a fluorescent lamp. The maximum specific growth rate showed the Nitzschia sp. under blue wavelength, although photoinhibition was observed above $100\;{\mu}mol\;m^{-2}\;s^{-1}$. Mixed wavelengths were also observed by decreasing the maximum cell density from high irradiances (>$100\;{\mu}mol$ photons $m^{-2}\;s^{-1}$). The compensation photon flux density ($I_0$) calculated from the mixed wavelengths equated to a depth of 4-10 m in Jinhae Bay, and was lower in the summer season than the depth due to suspended matter (ca. 4 m). Thus, the suitable depth for maximum growth of Nitzschia sp. might be extremely limited. In the growth kinetics for phosphate, half-saturation constant ($K_s$) was similar among different wavelengths, although the maximum growth rate was varied among different wavelengths. Because the $K_s$ was high than that of the phytoplankton, Nitzschia sp. might have adapted to the high nutrient concentrations, and have effective nutrient storage in the cell quota. Thus, Nitzschia sp. may be a useful species for bioremediation of the benthic layer in polluted inner bays by means of irradiated specific wavelength as blue.

Effects of A-site Ca and B-site Zr Substitution on the Dielectric Characteristics and Microstructure of BaTiO3-CaTiO3 Composite (A-site Ca 및 B-site Zr 첨가에 의한 BaTiO3-CaTiO3복합체의 유전특성 및 미세구조에 미치는 영향)

  • 윤만순;박영민
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.1
    • /
    • pp.37-45
    • /
    • 2003
  • The dielectric and sintering characteristics of composites made by substituting Ca ion to Ba-site and Zr ion to Ti site in $(Ba{1-x}Ca_x)(Ti{0.96-yZr_ySn_{0.04})O_3$ $(0.15{\leq}x{\leq}0.20,\;0.09{\leq}y{\leq}0.14)$ were investigated. As the content of Ca was more than 15 mol%, composite was formed by precipitating the second phase whose main element was $CaTiO_3$ and the fraction of the second phase was increased. The curie temperature of composites was depended on Ca concentration, $-1.7^{\circ}C$ per mol% and the maximum dielectric constant of composite was decreased by the rate of 200/mol%. The substitution of Zr ion decreased the curie temperature by the rate of $10^{\circ}C$ per mol% and the maximum dielectric constant was decreased by 217/mol% due to the increase of diffuse phase transition. The density and insulation breakdown characteristics were improved by suppressing the abnormal grain growth due to the increase of second phase. We developed the composition of Y5U (EIA standard) condenser which had high breakdown voltage and dielectric constant by controlling diffuse phase transition by the addition of Zr ion into composite.

Estimation of heritability and genetic correlation of body weight gain and growth curve parameters in Korean native chicken

  • Manjula, Prabuddha;Park, Hee-Bok;Seo, Dongwon;Choi, Nuri;Jin, Shil;Ahn, Sung Jin;Heo, Kang Nyeong;Kang, Bo Seok;Lee, Jun-Heon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.1
    • /
    • pp.26-31
    • /
    • 2018
  • Objective: This study estimated the genetic parameters for body weight gain and growth curve parameter traits in Korean native chicken (KNC). Methods: A total of 585 $F_1$ chickens were used along with 88 of their $F_0$ birds. Body weights were measured every 2 weeks from hatching to 20 weeks of age to measure weight gain at 2-week intervals. For each individual, a logistic growth curve model was fitted to the longitudinal growth dataset to obtain three growth curve parameters (${\alpha}$, asymptotic final body weight; ${\beta}$, inflection point; and ${\gamma}$, constant scale that was proportional to the overall growth rate). Genetic parameters were estimated based on the linear-mixed model using a restricted maximum likelihood method. Results: Heritability estimates of body weight gain traits were low to high (0.057 to 0.458). Heritability estimates for ${\alpha}$, ${\beta}$, and ${\gamma}$ were $0.211{\pm}0.08$, $0.249{\pm}0.09$, and $0.095{\pm}0.06$, respectively. Both genetic and phenotypic correlations between weight gain traits ranged from -0.527 to 0.993. Genetic and phenotypic correlation between the growth curve parameters and weight gain traits ranged from -0.968 to 0.987. Conclusion: Based on the results of this study population, we suggest that the KNC could be used for selective breeding between 6 and 8 weeks of age to enhance the overall genetic improvement of growth traits. After validation of these results in independent studies, these findings will be useful for further optimization of breeding programs for KNC.

Effect of Microbe Control and Water Temperature on Early Growth and Yield of Soybean Sprouts (콩 종실의 미생물 제어방법과 수주온도에 따른 콩나물의 초기 생육 및 수율)

  • 배경근;남승우;김경남;황영현
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.6
    • /
    • pp.453-458
    • /
    • 2002
  • High temperature sterilization method (30min. at $40^{\circ}C$longrightarrow30 min. at $70^{\circ}C$longrightarrow30 min. cooling at $20^{\circ}C$) was evaluated better than that of chloride, ion water, $O_3$ water, and salt water for the controling of micro-organisms at the early stage of sprout culture. Due to the improved germination rate and effective control of micro-organisms at early stage, the method resulted in much lower in the number of micro-organisms, higher in sprout yield, and 2 days longer in quality keeping at market than sprouts prepared by conventional method. There are two methods related with water temperature; constant temperature method (18.5$\pm$ $0.5^{\circ}C$) which keeps the same water temperature during the culture and 3-stage temperature method which changes the water temperature depending on the days after culture. Three-stage temperature method set the temperature at 21$\pm$ $1^{\circ}C$) in the second and third days after the initial acceleration of germination (about 4 hours), at 18.5$\pm$0.5$^{\circ}C$ in the fourth and fifth days, and at 17.0$\pm$ $0.5^{\circ}C$) in the sixth and seventh days. Three-stage temperature method could enhance the resistance power to diseases at the early growth stage, control the growth to standard goods (8-9cm in length and 2.15-2.30mm in width), and keep good body color at the middle or final stage. This method also increased the sprout yield by 6% compared with the conventional method, constant temperature method.

고분자량의 pullulan 생산을 위한 발효공정의 최적화

  • Kim, Seong-Gu;Lee, Ji-Hyeon;Kim, Jeong-Hwa;Kim, Mi-Ryeong;Lee, Jin-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.45-50
    • /
    • 2000
  • For the maximum production of pullulan from glucose as a carbon source, the effects of glucose concentration, pH and dissolved oxygen concentration on the cell growth and mass production of high-molecular weight pullulan by A. pullulans ATCC 42023 were evaluated. A. pullulans showed optimum pullulan productivity when glucose concentration was 0.3M (54g/L). And inhibitory effects on the cell growth and the pullulan production were observed at the glucose concentration higher than 0.3M (54g/L). The influence of pH control and dissolved oxygen on the pullulan production and growth of A. pullulans was studied. In shake-flasks, maximum pullulan production was obtained with $11.98g/{\ell}$ when initial pH was 6.5. In the batch fermentation, the maximum pullulan production of $13.31g/{\ell}$ was obtained with constant pH 4.5. And it was found that pullulan yield and synthesis rate increased with oxygen availability. For the production of commercially useful pullulan with high-molecular weight, a mixed carbon source, which was a mixture of glucose and glucosamine, was used for the pullulan fermentation with A. pullulans. On the basis of 5% mixed carbon source, culture with 3% glucosamine with 2% glucose was optimum condition for the production of high (M.W.> 1,000,000) and medium (M.W.> 200,000) molecular weight pullulan with considerable yields of cell mass and product. And the influence of pH control on the molecular weight of pullulan was studied in batch fermentation. It was found that the productivity of high-molecular weight pullulan with pH control at 6.5 was higher than that with no pH control.

  • PDF

Optimal Cultur Conditions for the Production of Insecticidal Toxin by Xenorhabdus nematophilus Isolated from Steinernema carpocapsae (Steinernema carpocapsae로부터 분리된 Xenorhabdus nematophilus에 의한 살충물질 생산을 위한 최적 배양조건)

  • 유연수;박선호
    • KSBB Journal
    • /
    • v.15 no.1
    • /
    • pp.100-105
    • /
    • 2000
  • Optimal medium composition, culture conditions, characteristics of phase variation and activity of insecticidal toxin by Xenorhabdus nematophilus isolated and identified from Korean entomopathogenic nematode Steinernema carpocapsae were examined. Optimal medium composition of this strain was 50-70 g/L yeast extract, 3 g/L $K_{2}HPO_{4}$, 1g/L $NH_{4}H_{2}PO_{4}$, 2g/L ${MgSO}_4$$\cdot$${7H}_{2}O$, 10g/L NaCl and, these, yeast extract was found as a limiting nutrient for cell growth. When Monod equation was applied, maxmum specific growth rate and Monod constant were estimated as 0.13 $hr^{-1}$ and 20g/L, respectively. The pH of culture medium increased up to 8.5-9.5 regardless of initial pH 6-7 as the cells continued to grow. The specific growth rate in a 7 L fermentor was 0.18 $hr^{-1}$, which was enhancement 1.4 fold compared to a flask culture. In case of phase variation, phase I fraction was maintained above 90% at the stationary phase for both flask and fermentor cultures. According to oral toxicity test of Gallena mellonella by Xenorhabdus nematophilus, the addition of cell pellets into feed inhibited normal growth of insect larvae and killed completely then after 20 days cultivation. When culture supernatant of this strain was injected into hemolymph of insect larva, the toxicity was strongest at 24hr cultivation in the early exponential phase and gradually decreased as the culture time proceeded.

  • PDF

SEMI-LONGITUDINAL STUDY ON GROWTH AND DEVELOPMENT OF CHILDREN AGED 6 TO 17 -Part III : GROWTH CHANGE OF CRANIOFACIAL HARD TISSUE (한국인 6-17세 아동의 성장과 발육에 관한 준종단적 연구 -제 3 세부 과제 : 두개 및 안면 경조직의 성장변화)

  • Hwang, Chung-Ju;Kil, Jea-Kyoung;Lim, Seon-A
    • The korean journal of orthodontics
    • /
    • v.26 no.5 s.58
    • /
    • pp.469-485
    • /
    • 1996
  • Orthodontic patients are individuals that grow and develop ; therefore selection of the proper time for orthodontic treatment is considered to be one of most difficult and yet difficult factor. Since the development of cephalometric X-ray, amount and Pattern of craniofacial growth change with aging could be predicted and be came useful in the process of orthodontic treatment. The relationship between the mean values of cephalometric measurements and body height and weight was studied among the groups(boys and girls) of Korean children from the ages 6-years to 17-years. 409 boys and 437 girls with no abnormality in growth and development and no history of orthodontic treatment from the ages of 6 years to 17 years were chosen as subjects Cephaloment X-ray were taken for 3 years and hard tissue analysis based on Burstone's COGS, which was devided into measurements of 6 parts(Cranial base, Maxillar and Mandible, Dental measurements). The relationship between craniofacial growth and height & weight was studied. The following conclusions were obtained : 1. The maximum growth in the measurements of cranial base, N-Ar(FH), N-Ba(FH) corresponded with the age with the maximum increase in body height & weight in both boys and girls. 2. Genial angle gradually decreased with aging in both boys and girls. 3. N-ANS(L) showed greater amount of growth than ANS-Ne(L), and this had greater influence on facial profile. 4. N-A-$Pog^{\circ}$ decreased with aging, and mandibular growth exceeded maxillary growth in amount and rate. 5. Length of Y-axis Increased, but Y-axis to FH plane remained constant. This show that mandible grows at a constant angulation to cranial base. 6. As permanent teeth erupt, interincisal angle deceased.

  • PDF

Stability of the growth process at pulling large alkali halide single crystals

  • V.I. Goriletsky;S.K. Bondarenko;M.M. Smirnov;V.I. Sumin;K.V. Shakhova;V.S. Suzdal;V.A. Kuznetzov
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.1
    • /
    • pp.5-14
    • /
    • 2003
  • Principles of a novel pulse growing method are described. The method realized in the crystal growing on a seed from melts under raw melt feeding provided a more reliable control of the crystallization process when producing large alkali halide crystals. The slow natural convection of the melt in the crucible at a constant melt level is intensified by rotating the crucible, while the crystal rotation favors a more symmetrical distribution of thermal stresses over the crystal cross-section. Optimum rotation parameters for the crucible and crystal have been determined. The spatial position oi the solid/liquid phase interface relatively to the melt surface, heaters and the crucible elements are considered. Basing on that consideration, a novel criterion is stated, that is, the immersion extent of the crystallization front (CF) convex toward the melt. When the crystal grows at a <> CF immersion, the raised CF may tear off from the melt partially or completely due to its weight. This results in avoid formation in the crystal. Experimental data on the radial crystal growth speed are discussed. This speed defines the formation of a gas phase layer at the crystal surface. The layer thickness il a function of time a temperature at specific values of pressure in the furnace and the free melt surface dimensions in the gap between the crystal and crucible wall. Analytical expressions have been derived for the impurity component mass transfer at the steady-state growth stage describing two independent processes, the impurity mass transfer along the <> path and its transit along the <> one. The heater (and thus the melt) temperature variation is inherent in any control system. It has been shown that when random temperature changes occur causing its lowering at a rate exceeding $0.5^{\circ}C/min$, a kind of the CF decoration by foreign impurities or by gas bubbles takes place. Short-term temperature changes at one heater or both result in local (i.e., at the front) redistribution of the preset axial growth speed.