• Title/Summary/Keyword: Growth pressure

Search Result 1,697, Processing Time 0.034 seconds

Environmental Characteristics and Floristic Study of Endangered Pedicularis hallaisanensis Habitats (멸종위기야생식물II급 한라송이풀 자생지의 환경특성 및 식물상)

  • Kim, Lim-Kyu;Choi, Sung-Dae;Choo, Gab-Chul;Hwang, Bu-Yeong;Gang, Geun-Hye;So, Soon-ku;Park, Eun-Hee
    • Journal of agriculture & life science
    • /
    • v.52 no.6
    • /
    • pp.163-173
    • /
    • 2018
  • This study was carried out to propose the baseline data for in situ conservation by analyzing environmental and growth characteristics in Pedicularis hallaisanenesis habitats. P. hallaisanensis habitats, according to investigations, were located on the slope of southwest at an elevation of 1,400 m in Mt. Gayasan and on the slope of southeast at an elevation of 1,500 m in Mt. Hallasan. Pedicularishallaisanensis habitats. Also, habitats were found at the grassland with no upper vegetation. In the study sites, soil pH and soil organic matter were 4.9-6.5 and 4.4-8.1%, respectively. A total of 55 vascular plants taxa were identified in ten quadrats in two habitats, of which 25 were inhabited in Mt. Gayasan and 37 in Mt. Hallasan. Current status of P. hallaisanensis habitats were very vulnerable with the pressure of the vegetation constantly threatening the species' survival. Thus, concrete conservation plans including diverse factors as light intensity, temperature and genetic analysis to protect natural habitats should be set up as soon as possible.

Fossil Scaphopods from the Hagjeon Formation and the Duho Formation, the Cenozoic Pohang Basin, Korea (신생대 제3기 포항분지의 학전층과 두호층에서 산출된 굴족류 화석)

  • Kong, Dal Yong;Lee, Seong Joo
    • Korean Journal of Heritage: History & Science
    • /
    • v.45 no.1
    • /
    • pp.218-231
    • /
    • 2012
  • A total of 126 fossil scaphopods (121 specimens from the Hagjeon Formation and 5 specimens from the Duho Formation) were found from the Cenozoic strata, Hagjeon and Duho Formations, Pohang Basin, Korea. Five species belonging two genera (Fissidentalium yokoyamai, F. sp. A, B, and Rhabdus sp. A, B) were classified: the most dominant species is Fissidentalium yokoyamai. The species of Fissidentalium yokoyamai is characterized by curved shell (accuration=3.90%) and very closely spaced longitudinal ribs on shell surfaces, while the species of Rhabdus is a nearly straight shell characterized by concentric growth lines without longitudinal ribs. Identification of two genera is somewhat easy due to such morphological differences but classification at generic level is hard because diagnostic features (e.g., cross section and apical structure) are lost in the most specimens. Consequently, except for Fissidentalium yokoyamai, the rest were classified temporarily as F. sp. A, B, and Rhabdus sp. A, B. Two types of preservation state were recognized: one is three-dimensionally preserved specimen (3D specimen) and the other is compressed specimen. Internal parts of the 3D specimen is filled with clastic sediments identical to the surrounding sediments of the shells, which is not observed in the compressed specimens. It is, thus, concluded that the 3D fossils were originally empty but internal cavity were immediately filled with the sediments, which may have protect from the compaction due to pressure during deposition of the gravelly to coarse sandstone of the Hagjeon Formation.

Hardness and Rebound Properties of Sprayed Green Soil Produced with Functional Additives for the Application to Steep Slopes (기능성 첨가재를 적용한 급경사면용 녹생토의 경도 및 리바운드 특성)

  • Lee, Byung-Jae;Kim, Hyo-Jung;Kim, Yun-Yung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.258-264
    • /
    • 2018
  • In this study, the improved performance of sprayed green soil was evaluated by incorporating functional additives. The optimal mixing ratio of the thickener and super-absorbent polymer, as an additive for moisture supply to the growth of plants within the range of mixing ratios that gives sufficient strength of green soil, was 5% and 1%, respectively. Using Portland cement as a main binder, the pH of the green soil was 9.1. To solve this alkali problem, the mixing proportion was improved so that the pH of the green soil was approximately 7.2 by mixing more than 10% of the chelate resin. The soil conductivity was measured to be 280 ~ 350mS/m under all the mixing conditions. This satisfied the criterion of less than 1000mS/m on the slope surface. As a result of measuring the soil hardness of the green soil prepared under the optimal mixing conditions of functional additives, it satisfied the criteria of 18 ~ 23mm when sprayed under a 1 bar pressure. The rebound rate was less than 15% when spraying green soil on a 75 % slope, and the hardness of the sprayed green soil was more than 18 mm.

Evaluation of Lipid Accumulation's Inhibitory Activity on 3T3-L1 Cells with Red Yeast Barley Extracts (홍맥 추출물의 3T3-L1세포에 대한 지방 축적 저해 활성평가)

  • Kwon, Gi-Seok;Kim, Byung-Hyuk;Lee, Jun-Hyeong;Hwang, Hak-Soo;Lee, Jung-Bok
    • Journal of Life Science
    • /
    • v.31 no.2
    • /
    • pp.192-198
    • /
    • 2021
  • Red yeast rice has been extensively used as food and traditional medicine for thousands of years in East Asian countries. It is produced by the fermentation of a particular yeast (in general, Monascus purpureus) as rice and various cereals (barley, soybean, etc.). Monascus sp. produces many secondary metabolites during its growth, including pigments, monacolins, and γ-aminobutyric acid. Some metabolites―specifically, monacolin K, γ-aminobutyric acid, dimerumic acid, and monascus pigments―have been reported to lower cholesterol and blood pressure while showing anti-obesity effects. In this study, we investigated the anti-obesity effect of ethanol extract from red yeast barley (RYB) fermented with Monascus sp. BHN-MK 2 on 3T3-L1 cells. The anti-obesity effects of RYB extract were examined: its lipid accumulation inhibitory effect was tested by Oil Red O staining, and obesity-related mRNA expression levels were tested by real-time RT-PCR in MDI stimulated 3T3-L1 cells. The intracellular lipid content of MDI-stimulated 3T3-L1 cells decreased significantly to 5.04%, 12.24%, and 23.52% in response to 200, 400, and 800 ㎍/ml RYB, respectively. Moreovers, we evaluated that RYB extract significantly downregulated the expression of C/EBPα, SREBP-1, and PPAR-γ gene in a dose-dependent manner. As a result, red yeast barley ethanol extracts exerted the strongest anti-obesity effects. Also, the results indicate that red yeast barley could be used as a functional anti-obesity food material.

Experimental study on vertically upward steam-water two-phase flow patterns in narrow rectangular channel

  • Zhou, Jiancheng;Ye, Tianzhou;Zhang, Dalin;Song, Gongle;Sun, Rulei;Deng, Jian;Tian, Wenxi;Su, G.H.;Qiu, Suizheng
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.61-68
    • /
    • 2021
  • Experiments of vertically upward steam-water two-phase flow have been carried out in single-side heated narrow rectangular channel with a gap of 3 mm. Flow patterns were identified and classified through visualization directly. Slug flow was only observed at 0.2 MPa but replaced by block-bubble flow at 1.0 MPa. Flow pattern maps at the pressure of 0.2 MPa and 1.0 MPa were plotted and the difference was analyzed. The experimental data has been compared with other flow pattern maps and transition criteria. The results show reasonable agreement with Hosler's, while a wide discrepancy is observed when compared with air-water two-phase experimental data. Current criteria developed based on air-water experiments poorly predict bubble-slug flow transition due to the different formation and growth of bubbles. This work is significant for researches on heat transfer, bubble dynamics and flow instability.

The effect of external influence and operational management level on urban water system from water-energy nexus perspective (물-에너지 넥서스 관점에서 외부영향과 운영관리 수준이 도시물순환시스템에 미치는 영향)

  • Choi, Seo Hyung;Shin, Bongwoo;Song, Youngseok;Kim, Dongkyun;Shin, Eunher
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.9
    • /
    • pp.587-602
    • /
    • 2023
  • Due to climate change, population growth, and economic development, the demand for water in the urban water system (UWS) and the energy required for water use constantly increase. Therefore, beyond the traditional method of considering only the water sector, the Nexus approach, which considers synergies and trade-offs between the water and energy sectors, has begun to draw attention. In previous researches, the Nexus methodology was used to demonstrate that the UWS is an energy-intensive system, analyze the water-energy efficiency relationship surrogated by energy intensity, and identify climate (long-term climate change, drought, type), geographic characteristics (topography, flat ratio, location), system characteristics (total supply water amount, population density, pipeline length), and operational management level (water network pressure, leakage rate, water saving) effects on the UWS. Through this, it was possible to suggest the direction of policies and institutions to UWS managers. However, there was a limit to establishing and implementing specific action plans. This study built the energy intensity matrix of the UWS, quantified the impact of city conditions, external influences, and operational management levels on the UWS using the water-energy Nexus model, and introduced water-energy efficiency criteria. With this, UWS managers will be able to derive strategies and action plans for efficient operation management of the UWS and evaluate suitability and validity after implementation.

Electrochemical Ion Separation Technology for Carbon Neutrality (탄소중립을 지향하는 전기화학적 이온 분리(EIONS) 기술)

  • Hwajoo Joo;Jaewuk Ahn;Sung-il Jeon;Jeyong Yoon
    • Applied Chemistry for Engineering
    • /
    • v.34 no.4
    • /
    • pp.331-346
    • /
    • 2023
  • Recently, green processes that can be directly used in an energy-efficient and electrified society to achieve carbon neutrality are attracting attention. Existing heat and pressure-based desalination technologies that consume tremendous amounts of energy are no exception, and the growth of next-generation electrochemical-based desalination technologies is remarkable. One of the most representative electrochemical desalination technologies is electrochemical ion separation (EIONS) technology, which includes capacitive desalination (CDI) and battery desalination (BD) technology. In the research field of EIONS, various system applications have been developed to improve system performance, such as capacity and cyclability. However, it is very difficult to understand the meaning and novelty of these applications immediately because there are only a few papers that summarize the research background for domestic readers. Therefore, in this review paper, we aim to describe the technological advances and individual characteristics of each system in clear and specific detail about the latest EIONS research. The driving principle, research background, and strengths and weaknesses of each EIONS system are explained in order. In addition, this paper concluded by suggesting the future development and research direction of EIONS. Researchers who are just beginning out in EIONS research can also benefit from this study because it will help them understand the research trend.

QTL Identification for Slow Wilting and High Moisture Contents in Soybean (Glycine max [L.]) and Arduino-Based High-Throughput Phenotyping for Drought Tolerance

  • Hakyung Kwon;Jae Ah Choi;Moon Young Kim;Suk-Ha Lee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.25-25
    • /
    • 2022
  • Drought becomes frequent and severe because of continuous global warming, leading to a significant loss of crop yield. In soybean (Glycine max [L.]), most of quantitative trait loci (QTLs) analyses for drought tolerance have conducted by investigating yield changes under water-restricted conditions at the reproductive stages. More recently, the necessity of QTL studies to use physiological indices responding to drought at the early growth stages besides the reproductive ones has arisen due to the unpredictable and prevalent occurrence of drought throughout the soybean growing season. In this study, we thus identified QTLs conferring wilting scores and moisture contents of soybean subjected to drought stress in the early vegetative stage using an recombinant inbred line (RIL) population derived from a cross between Taekwang (drought-sensitive) and SS2-2 (drought-tolerant). For the two traits, the same major QTL was located on chromosome 10, accounting for up to 11.5% of phenotypic variance explained with LOD score of 12.5. This QTL overlaps with a reported QTL for the limited transpiration trait in soybean and harbors an ortholog of the Arabidopsis ABA and drought-induced RING-D UF1117 gene. Meanwhile, one of important features of plant drought tolerance is their ability to limit transpiration rates under high vapor pressure deficiency in response to mitigate water loss. However, monitoring their transpiration rates is time-consuming and laborious. Therefore, only a few population-level studies regarding transpiration rates under the drought condition have been reported so far. Via employing an Arduino-based platform, for the reasons addressed, we are measuring and recording total pot weights of soybean plants every hour from the 1st day after water restriction to the days when the half of the RILs exhibited permanent tissue damage in at least one trifoliate. Gradual decrease in moisture of soil in pots as time passes refers increase in the severity of drought stress. By tracking changes in the total pot weights of soybean plants, we will infer transpiration rates of the mapping parents and their RILs according to different levels of VPD and drought stress. The profile of transpiration rates from different levels of severity in the stresses facilitates a better understanding of relationship between transpiration-related features, such as limited maximum transpiration rates, to water saving performances, as well as those to other drought-responsive phenotypes. Our findings will provide primary insights on drought tolerance mechanisms in soybean and useful resources for improvement of soybean varieties tolerant to drought stress.

  • PDF

Effects of Dietary Salt Restriction on the Development of Renal Failure in the Excision Remnant Kidney Model (식이 sodium 제한 및 식이 sodium 제한에 따른 항고혈압제의 투여가 만성신부전증의 진행에 미치는 영향에 관한 실험적 연구)

  • Kim Kee-Hyuk;Kim Sang-Yun;Kang Yong-Joo;Maeng Won-Jae;Kim Kyo-Sun
    • Childhood Kidney Diseases
    • /
    • v.3 no.2
    • /
    • pp.170-179
    • /
    • 1999
  • Purpose: To evaluate whether or not sodium restriction had its own beneficial effect and increased the efficiency of the anti-hypertensive drugs on the progression of renal failure. Methods: We studied using the excision remnant kidney model. Treatment groups were as follows: 5/6 nephrectomy and a 0.49% (normal-high) sodium diet (NN); 5/6 nephrectomy and a 0.25% (normal-low) sodium diet (LN); 5/6 nephrectomy, a 0.49% sodium diet and enalapril (NNE); 5/6 nephrectomy, a 0.49% sodium diet and nicardipine (NNN); 5/6 nephrectomy, a 0.25% sodium diet and enalapril (LNE); 5/6 nephrectomy, a 0.25% sodium diet and nicardipine (LNN). Both diets were isocaloric and had the same content of protein, phosphorus and calcium. Proteinuria, remnant kidney weight, mesangial expansion scores, and glomerular volume were assessed. Results: Blood pressure tended to be lower in LN compared to NN (P<0.05). NN developed progressive hypertension. LNE, LU, NNE, and NNN reduced blood pressure. LNE, LNN, NNE, NNN, and LN had significantly less proteinuria than NN at 16 weeks (P<0.05). At 24 weeks, LN developed proteinuria (82 mg/day), which were lessened in LNE (54 mg/day) and not lessened in LNN (76 mg/day). Mesangial expansion scores were significantly less in LN rats compared to those in NN rats. Glomerular volumes at 24 weeks in LN rats were significantly less compared to those at 16 weeks in NN rats. Mesangial expansion scores and glomerular volumes at 4, weeks, 12 weeks, and 24 weeks were not different among LN, LNE, and LNN groups. Conclusion: Dietary salt restriction lessens renal damage, at least in part, by inhibiting compensatory renal growth and reducing blood pressure. Enalapril was particularly successful in reducing proteinuria and glomerular injury when combined with dietary salt restriction.

  • PDF

Characterization of the Stretch-Activated Channel in the Hamster Oocyte (햄스터난자에서 신전에 의해 활성화되는 통로의 성상)

  • Kim, Y.-M.;Hong, S.-G.
    • Journal of Embryo Transfer
    • /
    • v.19 no.2
    • /
    • pp.89-99
    • /
    • 2004
  • Stretch-activated channels (SACs) responds to membrane stress with changes in open probability (Po). They play essential roles in regulation of cell volume and differentiation, vascular tone, and in hormonal secretion. SACs highly present in Xenopus oocytes and Ascidian oocytes are suggested to be involved in the regulation of pH and fluid transport to balance the osmotic pressure, but remain unclear in mammanlian oocytes. This study was investigated to find the presence of SACs in hamster oocytes and to examine their electrophysiological properties. To infer a role of SAC in relation to the development of early stage, we followed up to the stage of two-cell zygote with patch clamp techniques. Single channels were elicited by negative pressure (lower than ­15 cm$H_2O$). Interestingly, SACs were dependent on permeable cations such as $Na^+$ or $K^+$. As permeable cation removed from both sides across the membrane, SAC activity completely disappeared. When permeable cations present only in intracellular compartment, outward currents appeared at positive potentials. In contrast to this, inward currents occurred only at the negative voltage when permeable cation absent in cell interior. These result suggests that SAC carry cations through the nonselective cation channel (NSC channel). Taken together, we found that stretch activated channels present in hamster oocyte and the channel may carry cations through NSC channels. This stretch activated-NSC channels may play physiological role(s) in oocyte growth, maturation, fertilization and embryogenesis in fertilized oocytes to two-cell zygotes of hamster.