• Title/Summary/Keyword: Growth pressure

Search Result 1,700, Processing Time 0.028 seconds

Effects of gas pressure sintering (GPS) conditions on the mechanical properties of silicon nitride (가스압 소결(GPS) 조건이 질화규소의 기계적 특성에 미치는 영향)

  • 이수완;김성호;정용선
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.4
    • /
    • pp.619-625
    • /
    • 1997
  • $Si_3N_4$ powder with 2 wt% $Al_2O_3$ and 6 wt% $Y_2O_3$additives was gas pressure sintered (GPS). Characterization of the mechanical properties was compared with sintering conditions (temperature, pressure, time). Based on experimental result , the optimal condition of gas pressure sintering was found at $1900^{\circ}C$, 3 MPa for 1 hour. It is assumed that mechanical properties were degraded due to the grain coasening effects with increasing temperature or holding time. However, the grain size was decreased with increasing pressure, resulted in better strength, but lower fracture toughness. Present results suggested that optimization of processing parameters was impotant for better mechanical properties of $Si_3N_4$.

  • PDF

Effect of internal pressure variation on the ceramic particle separation characteristics : computer simulation (분리기 내부 압력 변화에 따른 세라믹 입자 분리 거동 전산모사)

  • 우효상;심광보;정용재
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.6
    • /
    • pp.304-308
    • /
    • 2003
  • By controlling the internal pressure in the cyclone separator, we investigated the separation charateristics of $Al_2O_3$, $Fe_2O_3$ particles with the internal pressure variation. 3-dimensional Langrangian approach was applied for the analysis of the particles separation, and then the minimum cut diameter of the separated particles and the separation rate were calculated through tracking the particle trajectories. The density of the argon gas for transporting particles was decreased corresponding the pressure decrease, consequently, caused the internal pressure drop in the cyclone separator. For that reason the finer particles were separated as the pressure was changed from an atmospheric pressure to an low pressure. Specifically, at 50 torr pressure, $Al_2O_3$ particles of the size of about 4 $\mu\textrm{m}$ and $Fe_2O_3$particles of about 3 $\mu\textrm{m}$ could be separated.

Verification for the Effect of Growth Hormone Promotion and Kinetic Factor Evaluation on Growth Hormone Activated Shoes (성장호르몬 활성화 신발에 대한 운동역학적(지면반력, 최대압력) 평가 및 성장호르몬 분비 효과 검증)

  • Moon, Young-Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.1
    • /
    • pp.235-243
    • /
    • 2008
  • The purpose of this study is to find out the effect of Growth Hormone promotin and kinetic factors on Growth Hormone Activated Shoes. The results of the present study were as follows; First, there was a significient difference between a normal shoes and the Growth Hormone activated shoes in the student's GH secretion with running test, and there was a significant interaction effect between shoes and distance. therefore it can be assumed that there is a significant effect of GH secretion in student at growth period during running with Growth Hormine Activated Shoes. Second, Within 4km walking, Growth Hormone secretion was in creased averagely in student. Third, Growth Hormone Activated Shoes make a large load for light motion as walking. For heavy motion as running, it make a large impulsion but good pressure distribution and small loading rate.

Synthesis of Single Crystal Diamond by Variation of Deposition Pressure by HFCVD (HFCVD에 의한 증착압력 변화에 따른 Single Crystal Diamond 합성)

  • Kim, Min Su;Bae, Mun Ki;Kim, Seong-Woo;Kim, Tae Gyu
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.1
    • /
    • pp.20-24
    • /
    • 2020
  • Single crystal diamonds are in great demand in such fields as mechanical, electronic applications and optoelectronics. Large area single crystal diamonds are attracting attention in future industries for mass production and low cost. In this study, hot filament CVD (HFCVD) is used to grow large area single crystal diamond. However, the growth rate of large area single crystal diamond using HFCVD is known to be very low. The goal of this study is to use single crystal diamond substrates in HFCVD with methane-hydrogen gas mixtures to increase the growth rate of single crystal diamond and to optimize the conditions by analysing the effects of deposition conditions for high quality crystallinity. The deposition pressure, the ratio of CH4/H2 gas, the substrate temperature and the distance between the filament and the substrate were optimized. The sample used a 4×4 (mm2) size single crystal diamond substrate (100), the CH4/H2 gas ratio was fixed at 5%, the substrate temperature was synthesized to about 1000℃. At this time, the deposition pressure was changed to three types of 50, 75, 85 Torr and deposited. Finally, optimization was investigated under pressure conditions to analyse the growth rate and quality of single crystal diamond.

Evaluation of Influence on the Fatigue Strength of Residual Stresses at the Welded Toe of Welded Structure. (용접구조물 요접토우부의 잔류응력이 피로강도에 미치는 영향 평가)

  • 차용훈;김하식;김일수;성백섭
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.4
    • /
    • pp.7-13
    • /
    • 2001
  • This Study is to investigate the influence of weld residual stresses on the fatigue crack growth behaviors in pressure ves-sel reinforcement. In order to perform this study, the automatically welded specimens are prepared. The material is ASTM A516 grade 60 steel used in pressure vessel mainly. For pad-on-plate of skip welding continuous welding and PWHT specimen, fatigue crack initiation is generally initiat-ed at weld starting and end toe zone, and ruptured at weld starting toe zone, Fatigue life if pad-on-plate continuous speci-men is increased more than that of pad-on-plate skip fillet welding specimene about 85% under low load, about 20% under high load, and decreased than that of two-pad continuous welding specimen about 85%. In da/dN-$\Delta$ Κ curve under low load, pad-on-plate skip fillet welding specimen showed retardation on the initial crack, and the fatigue crack growth rate at the low region of $\Delta$Κ greater specimene E(3.8{\times}10^{-6}$mm/cycle). And the fatigue life of welding specimen was smaller than that of PWHT specimen.

  • PDF

Selective Si Epitaxial Growth by Control of Hydrogen Atmosphere During Heating-up (승온중 수소 분위기 제어에 의한 선택적 Si 에피텍시 성장)

  • Son, Yong-Hun;Park, Seong-Gye;Kim, Sang-Hun;Nam, Seung-Ui;Kim, Hyeong-Jun
    • Korean Journal of Materials Research
    • /
    • v.12 no.5
    • /
    • pp.363-368
    • /
    • 2002
  • we proposed the use of $Si_2H_ 6/H_2$ chemistry for selective silicon epitaxy growth by low-pressure chemical vapor deposition(LPCVD) in the temperature range $600~710^{\circ}C$ under an ultraclean environment. As a result of ultraclean processing, an incubation period of Si deposition only on $SiO_2$ was found, and low temperature epitaxy selective deposition on Si was achieved without addition of HCI. Total gas flow rate and deposition pressure were 16.6sccm and 3.5mtorr, respectively. In this condition, we selectively obtained high-quality epitaxial Si layers of the 350~1050$\AA$ thickness. In older to extend the selectivity, we kept high pressure $H_2$ environment without $Si_2H_6$ gas for few minutes after first incubation period and then we conformed the existence of second incubation period.

고삼투압이 재조합 Erythropoietin의 생산과 당쇄구조에 미치는 효과

  • Jeong, Yeon-Tae;Kim, Jeong-Hoe
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.221-224
    • /
    • 2001
  • Effect of hyperosmotic pressure on growth of recombinant Chinese hamster 。 vary cells and Erythropoietin (EPO) production was investigated. Cells were cultivated in batch modes at various osmolalities. When the osmolality increased from 314 to 463mOsm/Kg, specific EPO productivity (qp) was increased up to 1.6-fold but cell growth was inhibited. EPO has a complex oligosaccharide structure that plays an important role in biological activity in vivo. To investigate the influence of hypoerosmotic pressure on the glycosylation, structural analysis of oligosaccharide was calTied out. Recombinant human EPO was produced by CHO cells grown under various osmotic pressure and purified from culture supernatants by heparin-sepharose affinity column and immunoaffinity column. N-linked oligosaccharides were released enzymatically and isolated by paper chromatography. The isolated oligosaccharides were labeled with fluorescent dye, 2-aminobenzamide and analyzed with MonoQ anion exchange chromatography and GlycosepN amide chromatography for the assignment of GU (glucose unit) value. Glycan analysis by HPLC showed that neutral (asialo) oligosaccharide was increased slightly with an increase in osmolality. In portion of sialylated glycan, total relative amount of mono- and di-sialyated glycan was increased but that of tri- and tetra-sialylated glycan decreased as osmolality was increased.

  • PDF

Fabrication of transition metal doped sapphire single crystal by high temperature and pressure acceleration method

  • Park, Eui-Seok;Jung, Choong-Ho;Kim, Moo-Kyung;Kim, Yoo-taek;Hong, Jung-Yoo
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.06a
    • /
    • pp.77-79
    • /
    • 1998
  • Metallic chromium was diffused in the{0001},{1120} white sapphires which were grown by the Verneuil method to enhance the physical properties of the sapphires. Chromium metal vapour pressure and {{{{ { N}_{2 } }}}} pressure were kept by {{{{ { 1$\times$10}^{-4 } }}}} torr at 21 50 $^{\circ}C$ and 6 atm in the quartz-tube, respectively. The color do the Cr-doped sapphires was changed to light red. Chromium was diffused faster in the {1120} than 수 the {0001} plane. It was speculated that the planar density was one the factors determining diffusion coeffcient

  • PDF

A Study on the Effect of Back Pressure on the Superplastic Bulge Forming of Ti-6Al-4V Alloy (Ti-6Al-4V 합금의 초소성 벌지성형에 미치는 배압력의 영향)

  • 송유준;이종수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.175-178
    • /
    • 1997
  • A modified Mukerjee's model considering the microstructural evolution was developed to study the superplastic bulge forming process of Ti-6Al-4V alloy. Through the microstructual observation after deformation, it was found that the grain growth rate of uniaxially tested specimens was different from that of biaxially deformed specimens. From this result, bulge forming experiments with and without back pressure were performed to examine the grain growth behavior and to compare the results of biaxial test with those of triaxial test. Good agreement between the prediction by a modified Mukerjee's model and the experimental measurements was obtained for bulge profile and thickness distribution.

  • PDF

Modeling of stress corrosion crack growth and lifetime of pipe grade high density polyethylene by using crack layer theory (Crack Layer 이론을 이용한 배관용 고밀도 폴리에틸렌의 응력부식균열 진전 및 수명 예측 모델)

  • Wee, Jung-Wook;Choi, Byoung-Ho
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.2
    • /
    • pp.45-50
    • /
    • 2015
  • In many cases, the field fracture mechanism of the thermoplastic pipe is considered as either brittle or environmental fractures. Thus the estimation of the lifetime by modeling slow crack growth considering such fracture mechanisms is required. In comparison of the some conventional and empirical equations to explain the slow crack growth rate such as the Paris' law, the crack layer theory can be used to simulate the crack and process zone growth behaviors precisely, so the lifetime of thermoplastic pipe can also be accurately estimated. In this study, the modified crack layer theory for the stress corrosion cracking (SCC) of high density polyethylene is introduced with detailed algorithm. The oxidation induction time of the HDPE is also considered for the reduction of specific fracture energy during exposed to chemical environments. Furthermore, the parametric study for an important SCC parameter is conducted to understand the slow crack growth behavior of SCC.