• Title/Summary/Keyword: Growth power

Search Result 2,106, Processing Time 0.029 seconds

Mapping the Spatial Distribution of IRG Growth Based on UAV

  • Na, Sang-Il;Park, Chan-Won;Kim, Young-Jin;Lee, Kyung-Do
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.495-502
    • /
    • 2016
  • Italian Ryegrass (IRG), which is known as high yielding and the highest quality winter annual forage crop, is grown in mid-south area in Korea. The objective of this study was to evaluate the use of unmanned aerial vehicle (UAV) for the monitoring IRG growth. Unmanned aerial vehicle imagery obtained from middle March to late May in Nonsan, Chungcheongnam-do. Unmanned aerial vehicle imagery corrected geometrically and atmospherically to calculate normalized difference vegetation index (NDVI). We analyzed the relationships between $NDVI_{UAV}$ of IRG and biophysical measurements such as plant height, fresh weight, and dry weight over an entire IRG growth period. The similar trend between $NDVI_{UAV}$ and growth parameters was shown. Correlation analysis between $NDVI_{UAV}$ and IRG growth parameters revealed that $NDVI_{UAV}$ was highly correlated with fresh weight (r=0.988), plant height (r=0.925), and dry weight (r=0.853). According to the relationship among growth parameters and $NDVI_{UAV}$, the temporal variation of $NDVI_{UAV}$ was significant to interpret IRG growth. Four different regression models, such as (1) Linear regression function, (2) Linear regression through the origin, (3) Power function, and (4) Logistic function were developed to evaluate the relationship between temporal $NDVI_{UAV}$ and measured IRG growth parameters. The power function provided higher accurate results to predict growth parameters than linear or logistic functions using coefficient of determination. The spatial distribution map of IRG growth was in strong agreement with the field measurements in terms of geographical variation and relative numerical values when $NDVI_{UAV}$ was applied to power function. From these results, $NDVI_{UAV}$ can be used as a new tool for monitoring IRG growth.

A Study on Fatigue Crack Growth Behavior of Steel Using AE (AE을 이용한 강의 피로균열전파 거동에 관한 연구)

  • Chung, K.Y.;Kim, S.J.;Kim, Y.S.;Oh, M.S.;Kim, Y.D.
    • Journal of Power System Engineering
    • /
    • v.5 no.2
    • /
    • pp.50-56
    • /
    • 2001
  • In this study, the effect of specimen thickness and stress ratio on fatigue crack growth in S45C steel was investigated. Acoustic emission was monitored during the fatigue crack growth test. Both crack closure and AE technique were used in assessing fatigue crack growth behavior. Constant amplitude loading tests were performed on CT type specimen with three different thicknesses and stress ratios. Crack closure was investigated to explain the influence of specimen thickness and stress ratio on the fatigue crack growth in the second growth region. The crack closure effect was decreased with specimen thickness and stress ratio.

  • PDF

Design and Self-sustainable Operation of 1 kW SOFC System (1kW 고체산화물 연료전지(SOFC) 시스템 설계 및 자열운전)

  • Lee, Tae-Hee;Choi, Jin-Hyeok;Park, Tae-Sung;Yoo, Young-Sung;Nam, Suk-Woo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.5
    • /
    • pp.384-389
    • /
    • 2009
  • KEPRI (Korea Electric Power Research Institute) has studied planar type solid oxide fuel cell (SOFC) stacks using anode-supported cells and kW class co-generation systems for residential power generation. In this work, a 1 kW SOFC system consisted of a hot box part, a cold BOP (balance of plant) part, and a hot water reservoir. The hot box part contained a SOFC stack made up of 48 cells, a fuel reformer, a catalytic combustor, and heat exchangers. Thermal management and insulation system were especially designed for self-sustainable operation in that system. A cold BOP part was composed of blowers, pumps, a water trap, and system control units. When the 1 kW SOFC stack was tested using hydrogen at $750^{\circ}C$, the stack power was about $1.2\;kW_e$ at 30 A and $1.6\;kW_e$ at 50 A. Turning off an electric furnace, the SOFC system was operated using hydrogen and city gas without any external heat source. Under self-sustainable operation conditions, the stack power was about $1.3\;kW_e$ with hydrogen and $1.2\;kW_e$ with city gas respectively. The system also recuperated heat of about $1.1\;kW_{th}$ by making hot water.

The Results of the 125 kW External Reforming Type MCFC Stack Operation (125kW 외부개질 용융탄산염 연료전지(ER MCFC) 스택 운전)

  • Lee, Jung-Hyun;Kim, Beom-Joo;Kim, Do-Hyeong;Kang, Seung-Won;Kim, Eui-Hwan;Lim, Hee-Chun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.5
    • /
    • pp.419-424
    • /
    • 2010
  • The 125kW external reforming (ER) type molten carbonate fuel cell (MCFC) system for developing a commercial prototype has been operated at Boryeong thermal power plant site since the end of 2009. The system consists of 125kW stack with $10,000 cm^2$ effective area, mechanical balance of plant (MBOP) with anode recycle system, and electrical balance of plant (EBOP). The 125kW MCFC stack installed in December, 2009 has been operated from January, 2010 after 20 days pre-treatment. The stack open circuit voltage (OCV) was 214V at initial load operation, which approaches the thermodynamically theoretical voltage. The stack voltage remained stable range from 160V to 180V at the maximum generating power of 120 kW DC. The stack has been operated for 3,270 hours and operated at rated power for 1,200 hours.

Fabrication of Micro Carbon Structures and Patterns with Laser-assisted Chemical Vapor Deposition (레이저 국소증착을 통한 미세 탄소구조물 및 패턴 제조)

  • 정성호;김진범;이선규;이종현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.914-917
    • /
    • 2002
  • Fabrication of micro carbon structures and patterns using laser-assisted chemical vapor deposition is studied. Argon ion laser and ethylene were used to grow micro carbon rod through pyrolytic decomposition of the reaction gas. The influence of reaction gas pressure and incident laser power on the diameter and growth rate of the micro carbon rod was experimentally investigated. The diameter of micro carbon rods increases linearly with respect to the laser power but is almost independent of the reaction gas pressure. Growth rate of the rod changes little with gas pressure when the laser power remains below 1W. When the carbon rod was grown at near threshold laser power, a very smooth surface is obtained on the rod. By continuously moving the focusing lens in the direction of growth, a micro carbon rod with a diameter of 28 ${\mu}{\textrm}{m}$ and aspect ratio of 100 was fabricated.

  • PDF

Implications of Shared Growth of Public Enterprises: Korea Hydro & Nuclear Power Case (공공기관의 동반성장 현황과 시사점: 한국수력원자력(주) 사례를 중심으로)

  • Jeon, Young-tae;Hwang, Seung-ho;Kim, Young-woo
    • Journal of Venture Innovation
    • /
    • v.4 no.2
    • /
    • pp.57-75
    • /
    • 2021
  • KHNP's shared growth activities are based on such public good. Reflecting the characteristics of a comprehensive energy company, a high-tech plant company, and a leading company for shared growth, it presents strategies to link performance indicators with its partners and implements various measures. Key tasks include maintaining the nuclear power plant ecosystem, improving management conditions for partner companies, strengthening future capabilities of the nuclear power plant industry, and supporting a virtuous cycle of regional development. This is made by reflecting the specificity of nuclear power generation as much as possible, and is designed to reflect the spirit of shared growth through win-win and cooperation in order to solve the challenges of the times while considering the characteristics as much as possible as possible. KHNP's shared growth activities can be said to be the practice of the spirit of the times(Zeitgeist). The spirit of the times given to us now is that companies should strive for sustainable growth as social air. KHNP has been striving to establish a creative and leading shared growth ecosystem. In particular, considering the positions of partners, it has been promoting continuous system improvement to establish a fair trade culture and deregulation. In addition, it has continuously discovered and implemented new customized support projects that are effective for partner companies and local communities. To this end, efforts have been made for shared growth through organic collaboration with partners and stakeholders. As detailed tasks, it also presents fostering new markets and new industries, maintaining supply chains, and emergency support for COVID-19 to maintain the nuclear power plant ecosystem. This reflects the social public good after the recent COVID-19 incident. In order to improve the management conditions of partner companies, productivity improvement, human resources enhancement, and customized funding are being implemented as detailed tasks. This is a plan to practice win-win growth with partner companies emphasized by corporate social responsibility (CSR) and ISO 26000 while being faithful to the main job. Until now, ESG management has focused on the environmental field to cope with the catastrophe of climate change. According to KHNP is presenting a public enterprise-type model in the environmental field. In order to strengthen the future capabilities of the nuclear power plant industry as a state-of-the-art energy company, it has set tasks to attract investment from partner companies, localization and new technologies R&D, and commercialization of innovative technologies. This is an effort to develop advanced nuclear power plant technology as a concrete practical measure of eco-friendly development. Meanwhile, the EU is preparing a social taxonomy to focus on the social sector, another important axis in ESG management, following the Green Taxonomy, a classification system in the environmental sector. KHNP includes enhancing local vitality, increasing income for the underprivileged, and overcoming the COVID-19 crisis as part of its shared growth activities, which is a representative social taxonomy field. The draft social taxonomy being promoted by the EU was announced in July, and the contents promoted by KHNP are consistent with this, leading the practice of social taxonomy

The Study of Electrical and Structural Performance of Aluminum Thin Film Deposited by Sputtering Method (스퍼터링법에 의해 증착된 알루미늄 박막의 전기적·구조적 특성에 관한 연구)

  • Kim, Doyoung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.2
    • /
    • pp.114-117
    • /
    • 2020
  • In this study, we performed the deposition of Al thin film using a DC magnetron sputtering method. To evaluate electrical and structural properties, the growth conditions were changed in terms of two functions, namely, sputtering power ranging from 41.6 to 216 W and film growth rate ranging from 5.35 to 26.39 nm/min. The growth rate and the microstructure were characterized by a scanning electron microscopy and X-ray diffraction analysis. The plane of crystalline growth showed that the preferential (111) direction and defects due to the grain boundary increased with DC power. The resistivity of the Al film over 50 nm showed a constant value by horizontal grain growth. Our results can be applicable for the preparation of nano-templates for anodic aluminum oxide.

Effect of the grain boundary on the magnetic properties of the multi-seeded melt growth processed YBCO superconductors (다중종자결정성장법으로 제조한 YBCO 초전도체의 결정입계에 따른 자기적 성질의 영향)

  • Kim, Chan-Joong;Joo, Jin-Ho;Han, Young-Hee;Han, Sang-Chul;Sung, Tae-Hyun;Hong, Gye-Won;Kim, Ho-Jin
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.293-297
    • /
    • 2000
  • Multiseeding with (100)/(100) grain junctions of top-seeded melt growth (TSMG) processed YBCO superconductors was studied. The effect of the number of seeds and the distance between two seeds on the levitation forces and the trapped magnetic fields of the TSMG-processed YBCO samples was investigated. Multiple seeding shortened the processing time for the fabrication of TSMC-processed YBCO superconductors. The large magnetic field was trapped at the grain junction when two seeds was placed without spacing, while the amount of the magnetic field decreased when the seed distance increased. This is attributed to the increased amount of the residual melt phases around the grain junctions.

  • PDF