• 제목/요약/키워드: Growth inhibition effect

검색결과 1,806건 처리시간 0.027초

Anti-tumor Effect of 4-1BBL Modified Tumor Cells as Preventive and Therapeutic Vaccine

  • Hong Sung Kim
    • 대한의생명과학회지
    • /
    • 제28권4호
    • /
    • pp.312-316
    • /
    • 2022
  • We have previously reported that genetically modified tumor cells with 4-1BBL have anti-cancer effects in a CT26 mouse colorectal tumor model. In this study, genetically modified tumor cells with 4-1BBL were evaluated for their potential as candidates for preventive and therapeutic cancer vaccine. To identify the effect of preventive and therapeutic vaccine of genetically modified tumor cells with 4-1BBL, tumor growth pattern of CT26-4-1BBL as a cancer vaccine was examined compared to CT26-beta-gal. In therapeutic vaccination, CT26-WT was inoculated into mice and then vaccinated mice with doxorubicin (Dox)-treated CT26-beta-gal and CT26-4-1BBL (single or three times). Triple vaccination with Dox-treated tumor cell inhibited tumor growth compared to single vaccination. Vaccination with CT26-4-1BBL showed an efficient tumor growth inhibition compared to vaccination with CT26-beta-gal. For preventive vaccination, Dox-treated CT26-beta-gal and CT26-4-1BBL was vaccinated into mice with three times and then administered mice with CT26-WT. Preventive vaccination with CT26-4-1BBL showed no tumor growth. Preventive vaccination with CT26-beta-gal also led to tumor-free mice. These results suggest that genetically modified tumor cells with 4-1BBL can be used as therapeutic or preventive cancer vaccine.

탕포산(湯泡散)이 삼종(三種)의 각막염(角膜炎) 유발균들에 미치는 영향 (The Experimental Studies on Anti-bacterial Effect of Tangpo-san on Three species of causative bacteria of Keratitis)

  • 강성구;유진곤;최관호;서형식
    • 한방안이비인후피부과학회지
    • /
    • 제19권1호
    • /
    • pp.1-10
    • /
    • 2006
  • This experimental study was performed to investigate the effect of herbal eye drops, Tangpo-san and Coptidis rhizoma on Staphylococcus aureus, Staphylococcus epidermidis and Pseudomonas aeruginosa keratitis. The following results were obtained by using Minimum inhibition Concentration(MIC) and inhibition Zone. 1. MIC on Staphylococcus aureus in Tangpo-san was 100%, in Coptidis rhizoma was 100% and in Cravit was 0.1% 2. MIC on Staphylococcus epidermidis in Tangpo-san was 100%, in Coptidis rhizoma was 10% and in Cravit was 0.1%. 3. MIC on Pseudomonas aeruginosa in Tangpo-san, Coptidis rhizoma was not showing and in Cravit was 0.1%. 4. The size of inhibition zone on Staphylococcus aureus for Tangpo-san was 13.3mm in $50{\mu}{\ell}$, for Coptidis rhizoma was 26mm in $50{\mu}{\ell}$ and for Cravit was 31mm in $50{\mu}{\ell}$, showing the highest antibacterial effect. 5. The size of inhibition zone on Staphylococcus epidermidis for Tangpo-san was 16mm in $50{\mu}{\ell}$, for Coptidis rhizoma was 25mm in $40{\mu}{\ell}$ and for Cravit was 34mm in $50{\mu}{\ell}$, showing the highest antibacterial effect. 6. The size of inhibition zone on Pseudomonas aeruginosa for Tangpo-san, Coptidis rhizoma was not and for Cravit was 24.7mm in $50{\mu}l$, showing the antibacterial effect. In addition, the results shows that the herbal eye drops, Tangpo-san and Coptidis rhizoma can be used to cure Staphylococcus aureus, Staphylococcus epidermidis keratitis and if further study is performed, the use of herbal eye drops will be valuable and beneficial in the clinical medicines.

  • PDF

Cell Growth Inhibitory Effect of Tissue Cultured Root of Wild Panax ginseng C.A. Mayer Extract on Various Cancer Cell Lines

  • Park, Jeong-Sook;Lee, Tae-Woong;Han, Kun
    • Natural Product Sciences
    • /
    • 제15권1호
    • /
    • pp.1-7
    • /
    • 2009
  • This study was performed to investigate the cell growth inhibitory effect of tissue cultured root of wild Panax ginseng C.A. Mayer (tcwPG). The human stomach carcinoma cell line, MKN 74, was incubated with 70% EtOH extract of tcwPG or Panax ginseng C.A. Mayer (PG) for 24 hrs. tcwPG inhibited cell growth at a concentration of $250{\mu}g/ml$. However, Panax ginseng extract did not inhibit cell growth at the same concentration. We also tested the ethyl acetate and $H_2O$ fractions of tcwPG. The inhibitory effect of the ethyl acetate fraction on cell proliferation in MKN 74 cells was more potent than that of the crude extract, and the inhibitory effect of the $H_2O$ fraction was less than that of the ethyl acetate fraction. When we separated tcwPG into polar and non-polar saponin fractions and then measured cell growth inhibition, the non-polar saponin in tcwPG exhibited cytotoxicity. To compare the effects of tcwPG on various cancer cell lines, we measured cytotoxicity in MKN 74 (stomach cancer cell line), SW 620 (colon cancer cell line) and PC 3 (prostate cancer cell line). All three cell lines showed cell growth inhibition, and the cell growth inhibitory effects were not quite different in the various cell lines. The non-polar saponins of tcwPG arrested PC 3 cells at G1-phase as did Panax ginseng.

유백피(楡白皮)가 HT-29 대장암세포의 활성 및 세포사멸에 미치는 영향 (Effects of Ulmi cortex extract on cell apoptosis in HT-29 human colon cancer cells)

  • 정선주;장태정;이제현;박용기
    • 대한본초학회지
    • /
    • 제21권4호
    • /
    • pp.51-58
    • /
    • 2006
  • Objectives : In this study, we investigate that Ulmi cortex extract contributes to growth inhibitory effect and anti-cancer activity on the HT-29 human colon cancer cells. Methods : Ulmi cortex was extracted from the leaves of the plant using water. The Ulmi cortex extract was treated to different concentrations for 24 hr. Growth inhibitory effect was analyzed by measuring FACS study and MTT assay. Cell cycle inhibition was confirmed by kinases assay. Cell apoptosis was confirmed by surveying caspases cascades activation using Western blot. Results : Exposure to Ulmi cortex extract (0.4mg/ml) results in an inhibitory effect on cell growth in HT-29 cells. Growth inhibition by Ulmi cortex extract in HT-29 cells was related with the inhibition of proliferation and induction of apoptosis. The Ulmi cortex extract induces G1-cell cycle arrest and DNA fragmentation in HT-29 cells. Furthermore, Ulmi cortex extract induces cell apoptosis through the activation of caspases-3 and PARP cleavage. Conclusion : Ulmi cortex extract induces apoptosis in human colon cancer cells, therefore, we suggest that Ulmi cortex extract can be used as a novel class of anti-cancer drugs.

  • PDF

건칠(乾漆)이 위암세포의 활성, 세포사멸 및 세포주기관련 유전자 발현에 미치는 영향 (Effects of Rhus verniciflua Stokes Extract on Cell Viability, Cell Cycle Progression and Apoptosis of AGS Cell)

  • 안진영;고성규;고흥
    • 동의생리병리학회지
    • /
    • 제20권3호
    • /
    • pp.701-709
    • /
    • 2006
  • The Rhus verniciflua Stokes (乾漆-RVS) has been used in traditional East Asia medicine for the therapy of gastritis, stomach cancer, although the mechanism for the biological activity is unclear. In the present study aims to investigate RVS extract contributes to growth inhibitory effect and it's the molecular mechanism on the human gastric cancer cells. AGS (gastric cancer cells) and RIEI (normal cells) were treated to different concentrations and periods of RVS extract $(10{\;}{\sim{{\;}100{\;}ug/mil)$. Growth inhibitory effect was analyzed by measuring FACS study and MTS assay. Cell cycle inhibition was confirmed by measuring CDK2 kinase activity by immunoprecipitation and kinase assay. And apoptosis was confirmed by surveying caspase cascades activation using a pan caspase inhibitor Exposure to RVS extract (50 ug/mll) resulted in a synergistic inhibitory effect on cell growth in AGS cells. Growth inhibition was related with the inhibition of proliferation and induction of apoptosis. The extract induces Gl -cell cycle arrest through the regulation of cyclins, the induction of p27kip1, and the decrease CDK2 kinase activity. And upregulated p27kip1 level is caused by protein stability increment by the reduction of S-phase kinase-associated protein 2 (Skp2), a key molecule related with p27kip1 ubiquitination and degradation, and do novo protein synthesis. Besides, 乾漆 extract induces apoptosis through the expression of Bax, poly(ADP-ribose) polymerase (PARP) and activation of caspase-3. RVS extract induces Gl -cell cycle arrest via accumulation of p27kip1 and apoptosis in human gastric cancer cells but not in normal cells, therefore we suggest that the extract can be used as a novel class of anti-cancer drugs.

Total petroleum hydrocarbon에 의한 작물의 발아 및 유근생장 저해 (Germination Rate and Radicle Growth Inhibition in Crops by Total Petroleum Hydrocarbons (TPH))

  • 임성진;김진효;최근형;권유빈;김두호;박병준
    • 한국환경농학회지
    • /
    • 제32권4호
    • /
    • pp.273-278
    • /
    • 2013
  • BACKGROUND: Total petroleum hydrocarbons (TPH), which are main materials of soil contamination by oil, are a term used for any mixture of hydrocarbons. Korea Ministry of Environment established the maximum permissible level of TPH in farmland by 500 mg/kg, and reported that the TPH level of soil in 266 installation such as gas station, transport company, and military unit ranged from 1,356 to 55,117 mg/kg and were much higher than the maximum permissible level in 2011. METHODS AND RESULTS: To determine the effect of TPH on crops, we investigated the effect of gasoline, kerosene, and diesel on the germination and radicle growth of mainly consumed crops. The germination rates of control in investigated all crops ranged from 80.0-100%. The germination and radicle growth in majority of investigated crops were not inhibited even at 2,500 mg/L. However, germination in onion, leek, and green perilla and radicle growth in leek, rape, tomato, and green perilla were significantly inhibited by increasing concentrations of gasoline, kerosene and diesel treatment. Germination and radicle growth inhibition of green perilla by kerosene and diesel were the highest, the percent inhibition at the 500 mg/L were 100 and 98.6%, 100 and 88.2%, respectively. 50% inhibition of germination in green perilla by kerosene and diesel were 39.96 and 29.87 mg/L, and 50% inhibition of radicle growth were 52.76 and 177.96 mg/L, respectively. Conclusion(s): These results suggest the possibility that the maximum permissible level of TPH might to be established general level with exception by crops.

Effect of Calcium Peroxide on the Growth and Proliferation of Microcystis aerusinosa, a Water-blooming Cyanobacterium

  • Inki Cho;Lee, Kisay
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제7권4호
    • /
    • pp.231-233
    • /
    • 2002
  • The potential of calcium peroxide to act as an agent for waterblooming control was In-vestigated by examining the growth inhibition of Microcystis aerusinosa. Due to the chemical nature of calcium peroxide, it can remove dissolved phosphate by forming an Insoluble precipitate, generating radicals, coagulant, and oxygen as byproducts as it dissolves in water. The growth of M. aerusinosa was severely inhibited and the chlorophyll-n concentration was drastically decreased in the presence of calcium peroxide. With 200 ppm of calcium peroxide dosage, a chlorophyll-a concentration of 1,700 mg/m$^3$ was lowered to below 10% of its initial concentration after 4 days. One possible explanation for this growth Inhibition is the removal of the available phosphate by calcium peroxide.

Effects of Agmatine on Polyamine Metabolism and the Growth of Prostate Tumor Cells

  • Choi, Yon-Sik;Cho, Young-Dong
    • BMB Reports
    • /
    • 제32권2호
    • /
    • pp.173-180
    • /
    • 1999
  • The effects of agmatine on the enzymes responsible for the biosynthesis of polyamines, the resultant levels of polyamines, and their effect on the growth of DU145 human prostate tumor cells were investigated. When agmatine was added to the medium, ornithine decarboxylase (ODC, EC 4.1.1.17) activity was substantially reduced, but S-adenosylmethionine decarboxylase (SAMDC, EC 4.1.1.50) activity increased markedly. These changes in ODC and SAMDC activities were the result of an induction of ODC-antizyme and a decreased turnover rate of SAMDC in the presence of agmatine. Accordingly, there was a decrease in the intracellular levels of putrescine and spermidine but an increase in the intracellular level of spermine. Cell growth was markedly inhibited by agmatine treatment and this inhibition was not recovered by the addition of putrescine or spermidine. Our results suggest that agmatine alters the intracellular amounts of polyamine in the cells, closely related to the inhibition of cell growth.

  • PDF

Pseudomonas sp. RP-222와 변이주 MR-3966 의 생육 및 Protease 생산에 Cysteine이 미치는 저해효과 (Inhibitory Effects of Cysteine on Growth and Protease Production of Preudomonas sp. RP-222 and its Mutant MR-3966)

  • 이광수;강신권;손봉수;노종수;김경숙;전성식;성낙계
    • 한국미생물·생명공학회지
    • /
    • 제22권6호
    • /
    • pp.621-626
    • /
    • 1994
  • Cysteine showed strong inhibitory effect on growth and protease production of Pseudo- monas sp. RP-222 and its mutant, MR-3966. Mid- to late-log phase cells were most sensitive to the presence of 10 mM cysteine. The inhibition caused by cysteine was almost completely overcome by addition of isoleucine, leucine and valine mixture to the medium, and inclusion of iso#leucine alone could greatly reduce the inhibitory effects of cysteine. Homocysteine and #cysteine, sulfur compounds having similar structure as cysteine, inhibited to varying degrees the growth of both strains. Cysteine and homocysteine were strong inhibitors of threonine deaminase but not transa#- minase B. These results suggest a relationship between the growth-inhibitory effects of cysteine and other sulfur compounds and the inhibition of isoleucine synthesis at the level of threonine deaminase.

  • PDF

교류 펄스에 의한 Saccharomyces cerevisiae의 생장억제 효과 (Growth inhibition of Saccharomyces cerevisiae by alternation current pulse)

  • 정지환;박현근;한홍의
    • 미생물학회지
    • /
    • 제25권3호
    • /
    • pp.249-253
    • /
    • 1987
  • Effects of Ac pulse at low voltage on Saccharomyces cerevisiae were studied. The treatment of yeast suspensions contained 0.2m NaCl with 500mA for 350 sec at $40^{\circ}C$ was shown about 50% of lethality, whereas in the treatment of the same suspensions with 250mA for 250 sec at the temperature ($10^{\circ}C$) corresponding to about 10% of lethality, growth was completely inhibited instead of lethality. The effect of growth inhibition was due to occurrence of auxotrophic strains under experimental conditions. Detection of auxotrophic yeasts was done tentatively with the difference of the number of viable yeast cells between direct counting by methylene blue staining and plate-count on yeast morphology agar.

  • PDF