• Title/Summary/Keyword: Growth environment sensor data

Search Result 49, Processing Time 0.027 seconds

Smart Farm Expert System for Paprika using Decision Tree Technique (의사결정트리 기법을 이용한 파프리카용 스마트팜 전문가 시스템)

  • Jeong, Hye-sun;Lee, In-yong;Lim, Joong-seon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.373-376
    • /
    • 2018
  • Traditional paprika smart farm systems are often harmful to paprika growth because they are set to follow the values of several sensors to the reference value, so the system is often unable to make optimal judgement. Using decision tree techniques, the expert system for the paprika smart farm is designed to create a control system with a decision-making structure similar to that of farmers using data generated by factors that depend on their surroundings. With the current smart farm control system, it is essential for farmers to intervene in the surrounding environment because it is designed to follow sensor values to the reference values set by the farmer. To solve this problem even slightly, it is going to obtain environmental data and design controllers that apply decision tree method. The expert system is established for complex control by selecting the most influential environmental factors before controlling the paprika smart farm equipment, including criteria for selecting decisions by farmers. The study predicts that each environmental element will be a standard when creating smart farms for professionals because of the interrelationships of data, and more surrounding environmental factors affecting growth.

  • PDF

Analysis of the growth environment and fruiting body quality of Pleurotus eryngii cultivated by Smart Farming (큰느타리(새송이)버섯 스마트팜 재배를 통한 생육환경 분석 및 자실체 품질 특성)

  • Kim, Kil-Ja;Kim, Da-Mi;An, Ho-Sub;Choi, Jin-Kyung;Kim, Seon-Gon
    • Journal of Mushroom
    • /
    • v.17 no.4
    • /
    • pp.211-217
    • /
    • 2019
  • Currently, cultivation of mushrooms using the Information and Communication Technology (ICT)-based smart farming technique is increasing rapidly. The main environmental factors for growth of mushrooms are temperature, humidity, carbon dioxide (CO2), and light. Among all the mentioned factors, currently, only temperature has been maintained under automatic control. However, humidity and ventilation are controlled using a timer, based on technical experience.Therefore, in this study, a Pleurotus eryngii first-generation smart farm model was set up that can automatically control temperature, humidity, and ventilation. After installing the environmental control system and the monitoring device, the environmental condition of the mushroom cultivation room and the growth of the fruiting bodies were studied. The data thus obtained was compared to that obtained using the conventional cultivation method.In farm A, the temperature during the primordia formation stage was about 17℃, and was maintained at approximately 16℃ during the fruiting stage. The humidity was initially maintained at 95%, and the farm was not humidified after the primordia formation stage. There was no sensor for CO2 management, and the system was ventilated as required by observing the shape of the pileus and the stipe. It was observed that, the concentration of CO2 was between 700 and 2,500 ppm during the growth period. The average weight of the mushrooms produced in farm A was 125 g, and the quality was between that of the premium and the first grade.In farm B. The CO2 sensor was in use for measurement purposes only; the system was ventilated as required by observing the shape of the pileus and the stipe. During the growth period, the CO2 concentration was observed to be between 640 and 4,500 ppm. The average weight of the mushrooms produced in farm B was 102 g.These results indicate that the quality of the king oyster mushroom is determined by the environmental conditions, especially by the concentration of CO2. Thus, the data obtained in this study can be used as an optimal smart farm model, where, by improving the environmental control method of farm A, better quality mushrooms were obtained.

Indoor Temperature Analysis by Point According to Facility Operation of IoT-based Vertical Smart Farm (IoT 기반 수직형 스마트 팜의 설비운영에 따른 지점별 실내온도분석)

  • Kim, Handon;Jung, Mincheol;Oh, Donggeun;Cho, Hyunsang;Choi, Seun;Jang, Hyounseung;Kim, Jimin
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.1
    • /
    • pp.98-105
    • /
    • 2022
  • It is essential for vertical smart farms that artificially grow crops in an enclosed space to properly utilize air environment facilities to create an appropriate growth environment. However, domestic vertical smart farm companies are creating a growing environment by relying on empirical data rather than systematic methods. Using IoT to create a growing environment based on systematic and precise monitoring can increase crop production yield and maximize profitability. This study aims to construct a monitoring system using IoT and to analyze the cause by demonstrating the imbalance of temperature environment, which is a significant factor in crop cultivation. 1) The horizontal temperature distribution of the multi-layer shelf was measured with different operating methods of LED and air conditioner. As a result, there was a temperature difference of "up to 1.7℃" between the sensors. 2) As a result of measuring the vertical temperature distribution, the temperature difference was "up to 6.3℃". In order to reduce this temperature gap, a strategy for proper arrangement and operation of air conditioning equipment is required.

Effects of Environmental Conditions on Vegetation Indices from Multispectral Images: A Review

  • Md Asrakul Haque;Md Nasim Reza;Mohammod Ali;Md Rejaul Karim;Shahriar Ahmed;Kyung-Do Lee;Young Ho Khang;Sun-Ok Chung
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.4
    • /
    • pp.319-341
    • /
    • 2024
  • The utilization of multispectral imaging systems (MIS) in remote sensing has become crucial for large-scale agricultural operations, particularly for diagnosing plant health, monitoring crop growth, and estimating plant phenotypic traits through vegetation indices (VIs). However, environmental factors can significantly affect the accuracy of multispectral reflectance data, leading to potential errors in VIs and crop status assessments. This paper reviewed the complex interactions between environmental conditions and multispectral sensors emphasizing the importance of accounting for these factors to enhance the reliability of reflectance data in agricultural applications.An overview of the fundamentals of multispectral sensors and the operational principles behind vegetation index (VI) computation was reviewed. The review highlights the impact of environmental conditions, particularly solar zenith angle (SZA), on reflectance data quality. Higher SZA values increase cloud optical thickness and droplet concentration by 40-70%, affecting reflectance in the red (-0.01 to 0.02) and near-infrared (NIR) bands (-0.03 to 0.06), crucial for VI accuracy. An SZA of 45° is optimal for data collection, while atmospheric conditions, such as water vapor and aerosols, greatly influence reflectance data, affecting forest biomass estimates and agricultural assessments. During the COVID-19 lockdown,reduced atmospheric interference improved the accuracy of satellite image reflectance consistency. The NIR/Red edge ratio and water index emerged as the most stable indices, providing consistent measurements across different lighting conditions. Additionally, a simulated environment demonstrated that MIS surface reflectance can vary 10-20% with changes in aerosol optical thickness, 15-30% with water vapor levels, and up to 25% in NIR reflectance due to high wind speeds. Seasonal factors like temperature and humidity can cause up to a 15% change, highlighting the complexity of environmental impacts on remote sensing data. This review indicated the importance of precisely managing environmental factors to maintain the integrity of VIs calculations. Explaining the relationship between environmental variables and multispectral sensors offers valuable insights for optimizing the accuracy and reliability of remote sensing data in various agricultural applications.

Analysis of Cropland Spectral Properties and Vegetation Index Using UAV (UAV를 이용한 농경지 분광특성 및 식생지수 분석)

  • LEE, Geun-Sang;CHOI, Yun-Woong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.4
    • /
    • pp.86-101
    • /
    • 2019
  • Remote sensing technology has been continuously developed both quantitatively and qualitatively, including platform development, exploration area, and exploration functions. Recently, the use cases and related researches in the agricultural field are increasing. Also, since it is possible to detect and quantify the condition of cropland and establish management plans and policy support for cropland and agricultural environment, it is being studied in various fields such as crop growth abnormality determination and crop estimation based on time series information. The purpose of this study was to analyze the vegetation index for agricultural land reclamation area using a UAV equipped with a multi-spectral sensor. In addition, field surveys were conducted to evaluate the accuracy of vegetation indices calculated from multispectral image data obtained using UAV. The most appropriate vegetation index was derived by evaluating the correlation between vegetation index calculated by field survey and vegetation index calculated from UAV multispectral image, and was used to analyze vegetation index of the entire area.

Design of the Smart Application based on IoT (사물 인터넷 기반 스마트 응용의 설계)

  • Oh, Sun-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.5
    • /
    • pp.151-155
    • /
    • 2017
  • With the rapid growth of the up-to-date wireless network and Internet technologies, huge and various types of things around us are connected to the Internet and build the hyper-connected society, and lots of smart applications using these technologies are actively developed recently. IoT connects human, things, space, and data with various types of networks to construct the hyper-connected network that can create, collect, share and appling realtime information. Furthermore, most of the smart applications are concentrated on the service that can collect and store realtime contexts using various sensors and cloud technology, and provide intelligence by making inferences and decisions from them nowadays. In this paper, we design a smart application that can accurately control and process the current state of the specific context in realtime by using the state-of-the-art ICT techniques such as various sensors and cloud technologies on the IoT based mobile computing environment.

Balancing Water Supply Reliability, Flood Hazard Mitigation and Environmental Resilience in Large River Systems

  • Goodwin, Peter
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.1-1
    • /
    • 2016
  • Many of the world's large ecosystems are severely stressed due to population growth, water quality and quantity problems, vulnerability to flood and drought, and the loss of native species and cultural resources. Consequences of climate change further increase uncertainties about the future. These major societal challenges must be addressed through innovations in governance, policy, and ways of implementing management strategies. Science and engineering play a critical role in helping define possible alternative futures that could be achieved and the possible consequences to economic development, quality of life, and sustainability of ecosystem services. Science has advanced rapidly during the past decade with the emergence of science communities coalescing around 'Grand Challenges' and the maturation of how these communities function has resulted in large interdisciplinary research networks. An example is the River Experiment Center of KICT that engages researchers from throughout Korea and the world. This trend has been complemented by major advances in sensor technologies and data synthesis to accelerate knowledge discovery. These factors combine to allow scientific debate to occur in a more open and transparent manner. The availability of information and improved communication of scientific and engineering issues is raising the level of dialogue at the science-policy interface. However, severe challenges persist since scientific discovery does not occur on the same timeframe as management actions, policy decisions or at the pace sometimes expected by elected officials. Common challenges include the need to make decisions in the face of considerable uncertainty, ensuring research results are actionable and preventing science being used by special interests to delay or obsfucate decisions. These challenges are explored in the context of examples from the United States, including the California Bay-Delta system. California transfers water from the wetter northern part of the state to the drier southern part of the state through the Central Valley Project since 1940 and this was supplemented by the State Water Project in 1973. The scale of these activities is remarkable: approximately two thirds of the population of Californians rely on water from the Delta, these waters also irrigate up to 45% of the fruits & vegetables produced in the US, and about 80% of California's commercial fishery species live in or migrate through the Bay-Delta. This Delta region is a global hotspot for biodiversity that provides habitat for over 700 species, but is also a hotspot for the loss of biodiversity with more than 25 species currently listed by the Endangered Species Act. Understanding the decline of the fragile ecosystem of the Bay-Delta system and the potential consequences to economic growth if water transfers are reduced for the environment, the California State Legislature passed landmark legislation in 2009 (CA Water Code SS 85054) that established "Coequal goals of providing a more reliable water supply for California and protecting, restoring, and enhancing the Delta ecosystem". The legislation also stated that "The coequal goals shall be achieved in a manner that protects and enhances the unique cultural, recreational, natural resource, and agricultural values of the Delta as an evolving place." The challenges of integrating policy, management and scientific research will be described through this and other international examples.

  • PDF

A Study on Smart Home Service System Design to Support Aging in Place (Aging in Place 지원을 위한 스마트 홈 서비스 시스템 설계에 관한 연구)

  • Sim, Sungho
    • Journal of Digital Convergence
    • /
    • v.17 no.12
    • /
    • pp.249-254
    • /
    • 2019
  • According to the recent expansion of the network environment, the spread of smart devices is continuously increasing. With the spread of smart devices such as smart phones, smart pads and wearables, changes are taking place in smart technologies and IT convergence technologies. The development of smart technology is a key element of the 4th industrial technology. The Fourth Industrial Revolution expanded the new service-based industry by adding intelligence to residential, industrial and production environments using IT convergence and smart devices. Research on providing various services using smart technologies, such as smart home, smart factory, smart farm, and smart healthcare, is being conducted in variety. In particular, There is a sharp rise in smart homes due to the proliferation of IoT devices and the growth of sensor technology, control technology, applications, data management, and cloud services. Smart home services using smart technology provide residents with convenient, beneficial services and environments. Smart home service has complemented the existing home network service, but there still are flaws to be modified. In other words, the spread of smart devices, the development of service provider-oriented services, and the interlocking of services have limitations in providing services in consideration of user environment and user state. In order to solve this problem, this study proposes a smart home service system that considers the situation of the elderly.

Growth of CdSe thin films using Hot Wall Epitaxy method and their photoelectrical characteristics (HWE방법에 의한 CdSe 박막 성장과 광전기적 특성)

  • Hong, K.J.;Lee, K.K.;Lee, S.Y.;You, S.H.;Shin, Y.J.;Suh, S.S.;Jeong, J.W.;Jeong, K.A.;Shin, Y.J.;Jeong, T.S.;Kim, T.S.;Moon, J.D.;Kim, H.S.
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.328-336
    • /
    • 1997
  • The CdSe thin films were grown on the Si(100) wafers by a hot wall epitaxy method (HWE). The source and substrate temperature are $600^{\circ}C$ and $430^{\circ}C$ respectively. The crystalline structure of epilayers was investigated by double crystal X-ray diffraction(DCXD). Hall effect on the sample was measured by the van der Pauw method and studied on the carrier density and mobility dependence on temperature. From Hall data, the mobility was increased in the temperature range 30K to 150K by impurity scattering and decreased in the temperature range 150k to 293k by the lattice scattering. In order to explore the applicability as a photoconductive cell, we measured the sensitivity(${\gamma}$), the ratio of photocurrent to darkcurrent(pc/dc), maximum allowable power dissipation(MAPD), spectral response and response time. The results indicated that the photoconductive characteristic were the best for the samples annealed in Cu vapor compare with in Cd, Se, air and vacuum vapour. Then we obtained the sensitivity of 0.99, the value of pc/dc of $1.39{\times}10^{7}$, the MAPD of 335mW, and the rise and decay time of 10ms and 9.5ms, respectively.

  • PDF